Real Time Predictive analytics of Hemodynamic Clinical Deterioration during the Preterm Transistion to Extra Uterine Life

早产过渡到宫外寿命期间血流动力学临床恶化的实时预测分析

基本信息

  • 批准号:
    10054442
  • 负责人:
  • 金额:
    $ 18.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The candidate applying for this award is an Assistant Professor of Pediatrics at Baylor College of Medicine (BCM). She has obtained a Master's of Science degree through the BCM Clinical Scientist Training Program and has published several first-author manuscripts in well-respected peer-reviewed pediatric journals. Her research focus is the hemodynamic status of extremely low birth weight (ELBW) infants. Extreme prematurity is an important public health problem in the U.S. because these infants are disproportionately affected by moderate to severe long-term disabilities, which are quite costly. There is little information, however, on the prevention of the short-term outcomes that result in disabilities in ELBW infants, most of which likely have their genesis from hemodynamic clinical deterioration during the first week of life. The overall objective of this proposed NHLBI Career Development Award application is to develop a series of multivariate clinical deterioration indices (CDIs) which will provide, in real-time, continuous and calibrated measurements of the likelihood of experiencing certain debilitating outcomes (and 1 clinical variable and 1 milestone) in ELBW infants and depict whether the responses to clinical interventions were successful. This will be accomplished through 3 specific aims, which are to: 1) Create independent CDIs from analysis of the physiologic inputs during the first week most associated with short-term outcomes (or the clinical variable/milestone) in ELBW infants; 2) Measure changes in each CDI prior to and after interventions used to treat hemodynamic clinical deterioration; and 3) Validate each CDI prospectively in a separate cohort of ELBW infants. In Aim 1, CDIs will be developed based on normalized logistic regression models. Separate models will be developed for each of 6 specific outcomes/clinical variable/milestone (intraventricular hemorrhage, periventricular leukomalacia, maternal creatinine clearance, necrotizing enterocolitis, intestinal perforation, and time to reach full feeds). For Aim 2, in the subset of this cohort who received interventions (e.g. fluid boluses or vasoactive medications), the CDI will be analyzed prior to and after each intervention to evaluate responses to treatment of perceived hemodynamic clinical deterioration. The final portion (Specific Aim 3) of the proposed research is validation of the CDIs in a separate cohort. Upon completion of the proposed research, the CDIs can be used in real-time to manage therapies with an evidence- and physiology-based approach never before available to clinicians or researchers. This will promote a shift from population-centric to individualized data- driven approaches, providing more effective care and surveillance for complex patients. The candidate will acquire important skills on her pathway to independence. Training activities during the award period include coursework and training in targeted neonatal echocardiography, training and practice in near-infrared spectroscopy and cerebral Doppler ultrasound, training in physiologic waveform analysis and predictive analytics, and training in the responsible conduct of research. Immediate career goals include becoming an expert in targeted neonatal echocardiography and proficient in the other monitoring modalities. The candidate is fortunate to have the facilities and resources available to her at BCM and Texas Children's Hospital (TCH). BCM had total research support of nearly $200 million from NIH in 2014 and is ranked # 1 in Texas for NIH funding. TCH is an internationally recognized 650-bed pediatric hospital affiliated with BCM. The mission of TCH, which is ranked nationally in all 10 pediatric subspecialties in the 2014-15 U.S. News & World Report, is to support excellence in patient care, education, and research with a commitment to enhance the health and well-being of children locally, nationally, and internationally. U.S. News & World Report ranked both the Neonatology Section and the Section of Pediatric Cardiology at TCH as #2 of U.S. programs in 2014-15. The candidate has assembled a scientific advisory committee with complementary intellect and content expertise that can guide her throughout the award period. The committee combines clinical insights from investigators in neonatology, pediatric cardiology, and pediatric anesthesiology with engineering and mathematical expertise in both physiologic signal processing and data analytics. The innovative approach in this proposal uses multiple monitoring methods, automated data capture, and real- time analysis to address a significant public health need for improving the knowledge base required to prevent common, costly, debilitating outcomes of ELBW infants. The proposed award is consistent with the NHLBI mission to promote the prevention and treatment of heart, lung, and blood diseases and enhance the health of all individuals so that they can live longer and more fulfilling lives. The exceptional resources and institutional support at BCM and TCH, outstanding multi-disciplinary mentorship team, and the proposed career development activities, will allow the candidate to achieve her long-term goal of becoming an independent investigator and nationally recognized expert in neonatal hemodynamics.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIELLE RAE RIOS其他文献

DANIELLE RAE RIOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIELLE RAE RIOS', 18)}}的其他基金

Real Time Predictive Analytics of Hemodynamic Clinical Deterioration during the Preterm Transition to Extra Uterine Life
早产儿过渡到宫外生命期间血流动力学临床恶化的实时预测分析
  • 批准号:
    9012981
  • 财政年份:
    2016
  • 资助金额:
    $ 18.16万
  • 项目类别:
Real Time Predictive Analytics of Hemodynamic Clinical Deterioration during the Preterm Transition to Extra Uterine Life
早产过渡到宫外生命期间血流动力学临床恶化的实时预测分析
  • 批准号:
    9333426
  • 财政年份:
    2016
  • 资助金额:
    $ 18.16万
  • 项目类别:
Real Time Predictive Analytics of Hemodynamic Clinical Deterioration during the Preterm Transition to Extra Uterine Life
早产过渡到宫外生命期间血流动力学临床恶化的实时预测分析
  • 批准号:
    9548726
  • 财政年份:
    2016
  • 资助金额:
    $ 18.16万
  • 项目类别:

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
  • 批准号:
    71671098
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
  • 批准号:
    11504059
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
  • 批准号:
    10064479
  • 财政年份:
    2023
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Collaborative R&D
Real-time predictive modeling for public health departments to control infectious diseases
公共卫生部门控制传染病的实时预测模型
  • 批准号:
    10878316
  • 财政年份:
    2023
  • 资助金额:
    $ 18.16万
  • 项目类别:
Predictive Analytics and Real-time Traffic Control for Urban Corridors
城市走廊的预测分析和实时交通控制
  • 批准号:
    LP200301389
  • 财政年份:
    2023
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Linkage Projects
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
  • 批准号:
    2246022
  • 财政年份:
    2023
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
Real-time predictive modeling for public health departments to control infectious diseases
公共卫生部门控制传染病的实时预测模型
  • 批准号:
    10494736
  • 财政年份:
    2022
  • 资助金额:
    $ 18.16万
  • 项目类别:
Predictive Monitoring: IMPact of Real-time Predictive Monitoring in Acute Care Cardiology Trial (PM-IMPACCT)
预测性监测:实时预测性监测在急性护理心脏病试验中的影响 (PM-IMPACCT)
  • 批准号:
    10417970
  • 财政年份:
    2022
  • 资助金额:
    $ 18.16万
  • 项目类别:
Predictive Monitoring: IMPact of Real-time Predictive Monitoring in Acute Care Cardiology Trial (PM-IMPACCT)
预测性监测:实时预测性监测在急性护理心脏病试验中的影响 (PM-IMPACCT)
  • 批准号:
    10693155
  • 财政年份:
    2022
  • 资助金额:
    $ 18.16万
  • 项目类别:
Next generation approach to highway management - a real time monitoring platform and predictive solution
下一代高速公路管理方法 - 实时监控平台和预测解决方案
  • 批准号:
    98821
  • 财政年份:
    2021
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Small Business Research Initiative
Real-time monitoring and predictive modelling of the impact of human behaviour and vaccine characteristics on COVID-19 vaccination in Scotland
人类行为和疫苗特征对苏格兰 COVID-19 疫苗接种影响的实时监测和预测建模
  • 批准号:
    ES/W001489/1
  • 财政年份:
    2021
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Research Grant
SBIR Phase II: Real-time predictive battery pack diagnostics and algorithms
SBIR 第二阶段:实时预测电池组诊断和算法
  • 批准号:
    2026198
  • 财政年份:
    2020
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了