Informatics Tools for Quantitative Digital Pathology Profiling and Integrated Prognostic Modeling
用于定量数字病理学分析和综合预后建模的信息学工具
基本信息
- 批准号:10070213
- 负责人:
- 金额:$ 42.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-12 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Accurate biomarker-driven prognostic stratification, response prediction, and cohort enrichment are critical for
realizing precision treatment strategies and population health management approaches that optimize quality of
life and survival for cancer patients. Genomics holds promise for improving classification and prognostication of
malignancies, yet oncology practice continues to rely heavily on immunohistochemistry (IHC) as a fundamental
tool due to its practicality and ability to provide protein-level and subcellular localization information. The goal
of this proposal is to create an open-source software resource for the quantitative analysis of IHC stained
tissues and effective integration of IHC, genomic, and clinical features for cancer classification and
prognostication. This proposal builds on our collective experience in computer-assisted analysis of microscopic
images (including IHC images), development of machine-learning methods to address the challenges of
classification and prognostication with heterogeneous and high-dimensional data, and leadership in collection
and large-scale analysis of cancer outcomes involving collaboration with multiple medical centers. This effort
for the first time will create tools to integrate quantitative IHC imaging, clinical, and genomic information that
will in turn enable the research community to explore strategies for the classification of malignancies and
prediction of outcomes. The proposed tools will be developed and extensively validated in close collaboration
with clinical, genomic, and digital pathology data from the NCI-supported Lymphoma Epidemiology of
Outcomes (LEO) cohort study. The software tools produced by this proposal will enable the characterization of
subcellular protein expression in cell nuclei, membranes and cytoplasmic compartments. Spatial features of
protein expression heterogeneity, along with patient-level summaries of protein expression will be used to
develop machine-learning classifiers for cancer subtypes, using diffuse large b-cell lymphomas as a driving
application. Technology for automatic tuning of machine learning algorithms will enable a broad class of
clinically and biologically motivated users to utilize these tools in their investigations. We will also provide an
interactive dashboard that enables users to integrate genomic and IHC-based features to explore prognostic
models of patient survival. These tools will be released and documented under an open-source model,
integrated with HistomicsTK (https://histomicstk.readthedocs.io/en/latest/), and available to the broader cancer
research community.
项目概要
准确的生物标志物驱动的预后分层、反应预测和队列富集对于
实现精准治疗策略和人口健康管理方法,优化治疗质量
癌症患者的生命和生存。基因组学有望改善疾病的分类和预测
恶性肿瘤,但肿瘤学实践仍然严重依赖免疫组织化学 (IHC) 作为基础
工具的实用性和提供蛋白质水平和亚细胞定位信息的能力。目标
该提案的目的是创建一个开源软件资源,用于 IHC 染色的定量分析
组织和 IHC、基因组和临床特征的有效整合,以进行癌症分类和
预测。该提案建立在我们在计算机辅助微观分析方面的集体经验的基础上
图像(包括 IHC 图像),开发机器学习方法以应对挑战
利用异构高维数据进行分类和预测,并在收集方面处于领先地位
以及涉及与多个医疗中心合作的癌症结果的大规模分析。这个努力
将首次创建整合定量 IHC 成像、临床和基因组信息的工具,
反过来将使研究界能够探索恶性肿瘤的分类策略和
结果的预测。拟议的工具将在密切合作中开发和广泛验证
具有来自 NCI 支持的淋巴瘤流行病学的临床、基因组和数字病理学数据
结果(LEO)队列研究。该提案产生的软件工具将能够表征
细胞核、细胞膜和细胞质区室中的亚细胞蛋白表达。的空间特征
蛋白质表达异质性以及患者水平的蛋白质表达摘要将用于
使用弥漫性大 B 细胞淋巴瘤作为驱动力,开发癌症亚型的机器学习分类器
应用。机器学习算法的自动调整技术将使广泛的类别成为可能
临床和生物学动机的用户在他们的研究中使用这些工具。我们还将提供一个
交互式仪表板,使用户能够集成基因组和基于 IHC 的功能来探索预后
患者生存模型。这些工具将在开源模型下发布和记录,
与 HistomicsTK (https://histomicstk.readthedocs.io/en/latest/) 集成,可用于更广泛的癌症
研究社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Cooper其他文献
Lee Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Cooper', 18)}}的其他基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10618320 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10443355 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10609284 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10466914 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10298684 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10646429 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Cloud strategies for improving cost, scalability, and accessibility of a machine learning system for pathology images
用于提高病理图像机器学习系统的成本、可扩展性和可访问性的云策略
- 批准号:
10824959 - 财政年份:2021
- 资助金额:
$ 42.55万 - 项目类别:
Improved Whole-Brain Spectroscopic MRI for Radiation Treatment Planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
9791190 - 财政年份:2018
- 资助金额:
$ 42.55万 - 项目类别:
Improved Whole-Brain Spectroscopic MRI for Radiation Treatment Planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
9981743 - 财政年份:2018
- 资助金额:
$ 42.55万 - 项目类别:
相似海外基金
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
- 批准号:
2335597 - 财政年份:2024
- 资助金额:
$ 42.55万 - 项目类别:
Continuing Grant
Quantitative assessment of plastic deformation in cutting tools materials
切削刀具材料塑性变形的定量评估
- 批准号:
10060628 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Collaborative R&D
SBIR TOPIC 417: QUANTITATIVE IMAGING SOFTWARE TOOLS FOR CANCER DIAGNOSIS AND TREATMENT PLANNING
SBIR 主题 417:用于癌症诊断和治疗计划的定量成像软件工具
- 批准号:
10924835 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Development of advanced quantitative tools for laser radiation safety evaluation in laser urology
激光泌尿外科激光辐射安全性评估先进定量工具的开发
- 批准号:
2325739 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Development of quantitative optical tools to continuously monitor cerebral autoregulation, blood flow, oxygenation and inflammation during pediatric extracorporeal life support
开发定量光学工具,在儿科体外生命支持过程中持续监测脑自动调节、血流、氧合和炎症
- 批准号:
10365859 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Structural steel project development integrating structural design and construction engineering: quantitative methods and AI-based tools
结构设计与施工工程相结合的钢结构项目开发:定量方法和基于人工智能的工具
- 批准号:
579062-2022 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Alliance Grants
Quantitative and Qualitative Tools for Predicting the Products and Mechanisms of Chemical Reactions
预测化学反应产物和机理的定量和定性工具
- 批准号:
RGPIN-2018-06652 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual
Advancing knowledge and developping mechanistic quantitative tools for in vitro-in vivo extrapolations in pharmacokinetics and toxicokinetics
增进知识并开发药代动力学和毒代动力学体外体内外推的机械定量工具
- 批准号:
RGPIN-2020-05251 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual
Computational tools and quantitative analyses of genome structure evolution
基因组结构进化的计算工具和定量分析
- 批准号:
10686401 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:














{{item.name}}会员




