Elucidating the molecular basis of Atoh1 lineage diversity in the developing hindbrain
阐明发育中的后脑 Atoh1 谱系多样性的分子基础
基本信息
- 批准号:10043552
- 负责人:
- 金额:$ 6.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2022-04-20
- 项目状态:已结题
- 来源:
- 关键词:AgonistAnimal ModelArousalBenchmarkingBiological ModelsBrain StemBrain regionBreathingCell NucleusCellsCerebellumCerebral cortexComplementComplexCuesDevelopmentDevelopmental ProcessDiseaseEmbryoEquilibriumEventFailureFluorescenceGenesGeneticGenetic TranscriptionGoalsHealthHearingHomologous GeneIn Situ HybridizationIn VitroInjuryKnock-in MouseKnowledgeLeadLifeLip structureLocationMalignant NeoplasmsMediatingModelingMolecularMusNervous System TraumaNeuraxisNeurologic DysfunctionsNeuronsOrganoidsOutcomePatternPopulationProcessProprioceptionProtocols documentationPublishingReporterSeriesSignal TransductionSpatial DistributionSpecific qualifier valueSpinal CordStreamSystemTestingTherapeuticTimeTissue-Specific Gene ExpressionTissuesTrainingTranscriptTraumaWorkbasecell typedevelopmental diseaseembryonic stem cellexcitatory neuronfunctional restorationhindbrainhuman pluripotent stem cellimprovedin vitro Modelin vivomigrationmorphogensmouse geneticsnerve stem cellnervous system developmentnervous system disorderneural circuitneuron developmentpreventprogenitorprogramsregenerative therapyrelating to nervous systemrepairedrespiratorysingle-cell RNA sequencingstem cell modelstem cellstranscription factor
项目摘要
A handful of neural progenitors give rise to thousands of diverse neuronal cell types that perform complex functions. These “blank slate” progenitors’ transition through a complex molecular network to become functionally and spatially distinct mature neurons. However, the molecular networks that drive neuronal fate decisions are poorly understood. One important group of progenitors express the proneural transcription factor, Atonal homolog 1 (Atoh1), and originate at the rhombic lip (RL) region of the hindbrain. Atoh1 progenitors are defined by spatial location at early stages of development and migrate away from the RL in distinct migration streams to ultimately give rise to all cerebellar excitatory neurons and dozens of brainstem nuclei responsible for critical functions (e.g. balance, hearing, and breathing). Failure of Atoh1 progenitors to properly form these distinct nuclei can be detrimental to life. Despite how important the Atoh1 lineage is to health and disease, the molecular network that directs Atoh1 progenitors through stages of differentiation remains unknown. If the transcriptional trajectories of Atoh1 progenitors were elucidated, regenerative therapies could be developed to repair genetic aberrations that lead to improper development, which would reduce the burden of neurological disease. The long-term objective of this proposal is to elucidate the molecular networks that drive the neuronal diversity of Atoh1 progenitor development to improve therapeutics to restore function following trauma to the central nervous system. The hypothesis of this proposal is that Atoh1 progenitors undergo temporal and spatial fate decisions driven by a defined molecular network. The objectives of this proposal are to identify the gene or sets of genes that drive neuronal fate decisions in the Atoh1 lineage and to determine if transcriptional trajectories are conserved in in vitro models of hindbrain development. Specific Aim 1 will test the hypothesis that a molecular cascade drives Atoh1 lineage diversity by instructing progenitors when, where, and how to differentiate. The molecular cascade will be determined by isolating the Atoh1 lineage from embryonic stage 9.5 to 18.5 and performing single cell RNA sequencing (scRNAseq). In situ hybridization will be used to identify spatial distribution of transcripts and confirm scRNAseq results. Specific Aim 2 will test the hypothesis that in vitro-derived mouse hindbrain organoids undergo similar transcriptional trajectories to in vivo development. A stem cell-derived mouse hindbrain model will be developed by exogenously adding agonists of endogenous signaling morphogens. Organoid composition and comparison to in vivo mouse hindbrain development will be elucidated though scRNAseq. The collective results will add to the fundamental knowledge of nervous system development by elucidating the molecular network that drives development of Atoh1 progenitors in a critical brain region. The strategies used in this proposal would be broadly applicable to studying progenitor development in other brain regions.
少数神经祖细胞产生数千种执行复杂功能的不同神经元细胞类型。这些“白板”祖细胞通过复杂的分子网络转变为功能和空间上不同的成熟神经元。然而,人们对驱动神经元命运决定的分子网络知之甚少。一组重要的祖细胞表达原神经转录因子无调性同源物 1 (Atoh1),起源于后脑的菱形唇 (RL) 区域。 Atoh1 祖细胞由发育早期阶段的空间位置决定,并以不同的迁移流从 RL 迁移出去,最终产生所有小脑兴奋性神经元和数十个负责关键功能(例如平衡、听力和呼吸)的脑干核。 Atoh1 祖细胞无法正确形成这些独特的细胞核可能会对生命有害。尽管 Atoh1 谱系对健康和疾病非常重要,但指导 Atoh1 祖细胞经历分化阶段的分子网络仍然未知。如果阐明 Atoh1 祖细胞的转录轨迹,就可以开发再生疗法来修复导致发育不良的遗传畸变,从而减轻神经系统疾病的负担。该提案的长期目标是阐明驱动 Atoh1 祖细胞发育的神经元多样性的分子网络,以改进治疗方法,以恢复中枢神经系统创伤后的功能。该提议的假设是 Atoh1 祖细胞经历由定义的分子网络驱动的时间和空间命运决定。该提案的目的是鉴定 Atoh1 谱系中驱动神经元命运决定的基因或基因组,并确定转录轨迹在后脑发育的体外模型中是否保守。具体目标 1 将检验分子级联通过指示祖细胞何时、何地以及如何分化来驱动 Atoh1 谱系多样性的假设。分子级联将通过从胚胎阶段 9.5 至 18.5 分离 Atoh1 谱系并进行单细胞 RNA 测序 (scRNAseq) 来确定。原位杂交将用于识别转录本的空间分布并确认 scRNAseq 结果。具体目标 2 将检验以下假设:体外衍生的小鼠后脑类器官经历与体内发育相似的转录轨迹。将通过外源添加内源信号形态发生素的激动剂来开发干细胞衍生的小鼠后脑模型。将通过 scRNAseq 阐明类器官的组成以及与体内小鼠后脑发育的比较。通过阐明驱动关键大脑区域 Atoh1 祖细胞发育的分子网络,集体结果将增加神经系统发育的基础知识。该提案中使用的策略将广泛适用于研究其他大脑区域的祖细胞发育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Christine Butts其他文献
Jessica Christine Butts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Christine Butts', 18)}}的其他基金
Elucidating the molecular basis of Atoh1 lineage diversity in the developing hindbrain
阐明发育中的后脑 Atoh1 谱系多样性的分子基础
- 批准号:
10320332 - 财政年份:2020
- 资助金额:
$ 6.53万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists