Efficient prediction of transmembrane binding sites for anesthetic ligands

有效预测麻醉配体的跨膜结合位点

基本信息

  • 批准号:
    10040079
  • 负责人:
  • 金额:
    $ 19.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Many anesthetics exert their action by binding to proteins embedded in the lipid membranes that encase cells. These proteins, including receptors and ion channels, allow cells to coordinate their action across the body. Explaining at the atomic level how binding to these proteins results in anesthesia requires knowing where on the protein the ligand actually binds. Determining this is a difficult problem that can be addressed with various methods, experimental and computational. The problem is made more difficult when the true binding sites are on a part of the protein that is actually in the lipid membrane (transmembrane domains), because of the complexity of the lipid environment. Computational methods to predict these sites that can accurately treat the membrane (e.g. flooding molecular dynamics) are also inefficient. But more efficient methods, particularly molecular docking, do not properly incorporate the effect of the membrane. This project seeks to improve docking specifically so it can predict anesthetic ligand binding sites in transmembrane domains. The overall goal is to create and calibrate a docking scoring function that takes the lipids into account, by conducting certain one-time preprocessing steps. This will be done by: 1) Predicting the microarchitecture of complex lipid membranes. Lipid membranes are composed of many different lipid types, and while the proportions of these lipids are known, the way they arrange themselves at the atomic level is not. This will be predicted using long-timescale molecular dynamics simulations. 2) Calculating the free energy profiles of insertion of selected anesthetics in these microarchitectures. It is necessary to know how favorable it is for the ligand in question to exist in the lipid membrane separately from the protein, so ligand free energy profiles as a function of depth in the membrane, as well as ligand rotation, will be calculated. 3) Identifying hydrophobic regions on the protein of interest. Traditional docking assumes that the protein is entirely solvated in water. Inhomogeneous solvation theory will be used to identify hydrophobic regions that do not contain water so they may be treated appropriately. 4) Constructing a modified docking scoring function that is parameterized by this data. The data calculated above will be fit to an efficient polynomial function for supplementing an existing docking scoring function. The project, by its completion, will have substantially improved docking methodology for this specific but important use case. It also will have served to improve the PI's ability to attack similar problems in the future, preparing him for a successful career as an independent physician-scientist.
许多麻醉剂通过与包裹细胞的脂质膜内的蛋白质结合来发挥作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Thenganpallil Joseph其他文献

Thomas Thenganpallil Joseph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Thenganpallil Joseph', 18)}}的其他基金

Efficient prediction of transmembrane binding sites for anesthetic ligands
有效预测麻醉配体的跨膜结合位点
  • 批准号:
    10465045
  • 财政年份:
    2020
  • 资助金额:
    $ 19.69万
  • 项目类别:
Efficient prediction of transmembrane binding sites for anesthetic ligands
有效预测麻醉配体的跨膜结合位点
  • 批准号:
    10678957
  • 财政年份:
    2020
  • 资助金额:
    $ 19.69万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 19.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了