Dynamic organelle membrane contacts as key regulators of virus replication
动态细胞器膜接触作为病毒复制的关键调节因子
基本信息
- 批准号:10011555
- 负责人:
- 金额:$ 4.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:ApoptosisBiochemicalBiogenesisBiologicalBiological AssayBiological ModelsBiological ProcessBiologyBiotinCellsCellular biologyCholesterolComplexConfocal MicroscopyCytomegalovirusCytomegalovirus InfectionsEndoplasmic ReticulumEndosomesEukaryotic CellFutureGene ExpressionGenetic TranscriptionGrowthHerpes Simplex InfectionsHerpesviridaeHerpesvirus 1HumanImageInfectionInfluenza A virusKnowledgeLabelLigaseLinkLipidsMass Spectrum AnalysisMeasurementMeasuresMediatingMembraneMetabolismMethodsMicroscopyMitochondriaMolecular VirologyOrganellesOrthomyxoviridaePhenotypePilot ProjectsPlasmalogensPlayProcessProductionProteinsProteomicsRegulationRoleSeriesSiteSmall Interfering RNASpecificityStimulusStressStructureSubcellular SpacesTestingTimeUp-RegulationVesicleViralVirionVirusVirus AssemblyVirus DiseasesVirus ReplicationWorkbasecholesterol controlendosome membranehuman pathogenimmunoregulationknock-downlive cell imaginglive cell microscopyobligate intracellular parasiteparticleperoxisomeperoxisome membranestemtraffickingvirology
项目摘要
PROJECT ABSTRACT
Cellular organelles form dynamic intracellular networks by engaging in direct membrane contact. Membrane
contact sites (MCSs), which link organelle membranes via protein interactions, are fundamental to the regulation
of organelle structure, composition, and dynamics. As these features dictate organelle function, MCSs also
control diverse biological processes like, metabolism, trafficking, organelle biogenesis, and apoptosis. However,
organelle contacts remain largely unexplored during mammalian virus infection despite the knowledge that
organelles play critical, and often conserved, roles in a broad range of virus infections. Moreover, many virus-
induced changes to organelles, such as vesicular remodeling, mitochondrial fragmentation, and immune
modulation, are directly related to MCS-controlled functions. I hypothesize that membrane contact sites are
key regulatory hubs of virus replication and actively modulated during infection. I propose an integrative
live-cell imaging and quantitative proteomics approach to examine MCS dynamics across subcellular space and
infection time. This workflow includes targeted proteomics to determine temporal MCS protein abundances,
confocal microscopy to examine organelle contact phenotypes, and molecular virology-based functional assays
that delve into the mechanisms underlying the roles of membrane contact sites in virus replication. I have already
established an experimental method to track alterations in MCS protein abundances with high sensitivity and
precision during the progression of a viral infection. I further applied this method in infections with several human
viruses, including the herpesviruses cytomegalovirus (HCMV) and herpes simplex virus 1 (HSV-1), and the
orthomyxovirus Influenza A. Indeed, I discovered that these viruses change the composition of MCSs across
infection time, with temporal and organelle specificity related to each unique virus replication strategy. Among
these viruses, the wide-spread human pathogen HCMV caused the most striking changes, triggering a nearly
global upregulation and rewiring of MCSs. Given the known role of the endoplasmic reticulum (ER) as a master
regulator of cellular organelles, ER-mediated contacts are poised to facilitate key steps in the virus replication
cycle, and my preliminary functional analyses support this. In this study, I will investigate the function and
regulation of two critical ER contacts in HCMV infection. First, I will establish the role of ER-peroxisome contacts
in modulating peroxisome plasticity for virus assembly. I hypothesize that ER-peroxisome contact is increased
during infection and modified by virus-host protein interactions to enhance lipid synthesis for formation of the
viral envelope. Second, I will investigate ER-endosome contacts as regulators of the vesicular rearrangements
required for virion assembly and egress, which I predict occurs in an endosome type-specific manner to control
cholesterol distribution and endosome trafficking directionality. As MCSs are fundamental to organelle biology,
this work will help expand the understanding of the mechanisms at the core of human virus replication.
项目摘要
细胞器通过直接膜接触形成动态的细胞内网络。膜
接触位点(MCS)通过蛋白质相互作用连接细胞器膜,是调节的基础
细胞器的结构、组成和动力学。由于这些特征决定了细胞器的功能,
控制不同的生物过程,如代谢、运输、细胞器生物发生和凋亡。然而,在这方面,
在哺乳动物病毒感染期间,细胞器接触仍然在很大程度上未被探索,
细胞器在广泛的病毒感染中起着关键的、通常是保守的作用。此外,许多病毒-
诱导细胞器的变化,如囊泡重塑,线粒体断裂,免疫
调制直接与MCS控制功能相关。我假设膜接触部位
病毒复制的关键调控中心,并在感染期间积极调节。我建议一个综合的
活细胞成像和定量蛋白质组学方法来检查跨亚细胞空间的MCS动态,
感染时间该工作流程包括靶向蛋白质组学以确定时间MCS蛋白质丰度,
共聚焦显微镜检查细胞器接触表型,以及基于分子病毒学的功能测定
深入研究了病毒复制中膜接触位点的作用机制。我已经
建立了高灵敏度跟踪MCS蛋白丰度变化的实验方法,
在病毒感染过程中的精确度。我进一步将这种方法应用于几种人类感染,
病毒,包括疱疹病毒巨细胞病毒(HCMV)和单纯疱疹病毒1(HSV-1),以及
甲型流感病毒事实上,我发现这些病毒改变了MCSs的组成,
感染时间,与时间和细胞器特异性相关的每一个独特的病毒复制策略。之间
在这些病毒中,广泛传播的人类病原体HCMV引起了最引人注目的变化,引发了近
MCSs的整体上调和重新布线。鉴于已知内质网(ER)作为主细胞的作用,
作为细胞器的调节器,ER介导的接触有助于病毒复制的关键步骤
循环,我的初步功能分析支持这一点。在这项研究中,我将研究功能和
调节HCMV感染中两个关键的ER接触。首先,我将建立ER-过氧化物酶体接触的作用,
在调节过氧化物酶体可塑性的病毒装配。我假设ER-过氧化物酶体接触增加
在感染过程中,通过病毒-宿主蛋白质相互作用进行修饰,以增强脂质合成,
病毒包膜其次,我将研究ER-内体接触作为囊泡重排的调节剂,
这是病毒体组装和出口所必需的,我预测这是以一种内体类型特异性的方式发生的,
胆固醇分布和内体运输方向性。由于MCS是细胞器生物学的基础,
这项工作将有助于扩大对人类病毒复制核心机制的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katelyn Camille Cook其他文献
Katelyn Camille Cook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katelyn Camille Cook', 18)}}的其他基金
Dynamic organelle membrane contacts as key regulators of virus replication
动态细胞器膜接触作为病毒复制的关键调节剂
- 批准号:
10192643 - 财政年份:2019
- 资助金额:
$ 4.55万 - 项目类别:
相似海外基金
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2022-03971 - 财政年份:2022
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2021
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2020
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
The biochemical niche of nuclear small RNA biogenesis machinery
核小RNA生物发生机制的生化生态位
- 批准号:
538658-2019 - 财政年份:2019
- 资助金额:
$ 4.55万 - 项目类别:
University Undergraduate Student Research Awards
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2019
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2018
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and structural studies of early eukaryotic ribosome biogenesis
早期真核核糖体生物发生的生化和结构研究
- 批准号:
487246-2016 - 财政年份:2017
- 资助金额:
$ 4.55万 - 项目类别:
Postgraduate Scholarships - Doctoral
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2017
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and Genetic Characterization of Ribosome Biogenesis and Functional Diversity
核糖体生物发生和功能多样性的生化和遗传特征
- 批准号:
RGPIN-2016-03729 - 财政年份:2016
- 资助金额:
$ 4.55万 - 项目类别:
Discovery Grants Program - Individual
Biochemical and structural studies of early eukaryotic ribosome biogenesis
早期真核核糖体生物发生的生化和结构研究
- 批准号:
487246-2016 - 财政年份:2016
- 资助金额:
$ 4.55万 - 项目类别:
Postgraduate Scholarships - Doctoral