Automated Detection and Classification of Laryngeal Diseases Using Deep Neural Networks

使用深度神经网络自动检测和分类喉部疾病

基本信息

  • 批准号:
    10043172
  • 负责人:
  • 金额:
    $ 15.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-10 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The long-term goal of this project is to improve the care of patients with laryngeal disorders through development of automated diagnostic support for in-office flexible laryngoscopy. To accomplish this goal, we propose developing neural network-based algorithms to detect and classify structural laryngeal lesions in laryngoscopy images. An automated diagnostic tool for in-office laryngoscopy such as we propose will have several benefits: (1) It will improve access to care for patients with symptoms of laryngeal dysfunction living in communities with limited otolaryngology resources, (2) It will improve early detection of laryngeal cancers potentially reducing the morbidity of treatment, and (3) It will prove a valuable teaching tool for students and residents first learning to interpret laryngoscopic exams. Flexible laryngoscopy is a common in-office procedure performed by otolaryngologists to evaluate the upper aerodigestive tract in patients with symptoms of laryngeal dysfunction. Subtle differences in the appearance of laryngeal lesions enable otolaryngologists to differentiate benign lesions from suspected malignant ones. The expertise and clinical acumen to correctly interpret laryngoscopic findings requires years of training and therefore laryngoscopy is largely only performed in subspecialty otolaryngology clinics. The primary objective of this project is to develop neural network-based algorithms to detect and classify structural laryngeal lesions. Our hypothesis is that these algorithms can be trained using a large dataset of laryngeal images to accurately detect and classify structural laryngeal lesions on flexible laryngoscopic exam. To test this hypothesis, we propose the following aims: (1) Generate a dataset of high-quality, labeled endoscopic laryngeal images corresponding to normal and structural lesions of the larynx, (2) Develop a location-aware anchor-based reasoning neural network for accurate detection of laryngeal lesions, and (3) Develop an adaptive network model for classification of structural laryngeal pathologies including papilloma, polyp, leukoplakia and suspected malignancy. With expertise in the diagnosis and treatment of laryngeal disorders and computer vision, including object detection and classification, our multidisciplinary team is uniquely qualified to complete this project.
项目总结

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Discriminative Channel Diversification Network for Image Classification.
  • DOI:
    10.1016/j.patrec.2021.12.004
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Patel, Krushi;Wang, Guanghui
  • 通讯作者:
    Wang, Guanghui
Gender, Smoking History, and Age Prediction from Laryngeal Images.
  • DOI:
    10.3390/jimaging9060109
  • 发表时间:
    2023-05-29
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
  • 通讯作者:
Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations.
结肠镜检查息肉检测和分类:数据集创建和比较评估。
  • DOI:
    10.1371/journal.pone.0255809
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li K;Fathan MI;Patel K;Zhang T;Zhong C;Bansal A;Rastogi A;Wang JS;Wang G
  • 通讯作者:
    Wang G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Martin Bur其他文献

Andres Martin Bur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andres Martin Bur', 18)}}的其他基金

Radiogenomic predictors of treatment response in head and neck squamous cell carcinoma
头颈鳞状细胞癌治疗反应的放射基因组预测因子
  • 批准号:
    10879183
  • 财政年份:
    2023
  • 资助金额:
    $ 15.44万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了