Automated Detection and Classification of Laryngeal Diseases Using Deep Neural Networks

使用深度神经网络自动检测和分类喉部疾病

基本信息

  • 批准号:
    10043172
  • 负责人:
  • 金额:
    $ 15.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-10 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The long-term goal of this project is to improve the care of patients with laryngeal disorders through development of automated diagnostic support for in-office flexible laryngoscopy. To accomplish this goal, we propose developing neural network-based algorithms to detect and classify structural laryngeal lesions in laryngoscopy images. An automated diagnostic tool for in-office laryngoscopy such as we propose will have several benefits: (1) It will improve access to care for patients with symptoms of laryngeal dysfunction living in communities with limited otolaryngology resources, (2) It will improve early detection of laryngeal cancers potentially reducing the morbidity of treatment, and (3) It will prove a valuable teaching tool for students and residents first learning to interpret laryngoscopic exams. Flexible laryngoscopy is a common in-office procedure performed by otolaryngologists to evaluate the upper aerodigestive tract in patients with symptoms of laryngeal dysfunction. Subtle differences in the appearance of laryngeal lesions enable otolaryngologists to differentiate benign lesions from suspected malignant ones. The expertise and clinical acumen to correctly interpret laryngoscopic findings requires years of training and therefore laryngoscopy is largely only performed in subspecialty otolaryngology clinics. The primary objective of this project is to develop neural network-based algorithms to detect and classify structural laryngeal lesions. Our hypothesis is that these algorithms can be trained using a large dataset of laryngeal images to accurately detect and classify structural laryngeal lesions on flexible laryngoscopic exam. To test this hypothesis, we propose the following aims: (1) Generate a dataset of high-quality, labeled endoscopic laryngeal images corresponding to normal and structural lesions of the larynx, (2) Develop a location-aware anchor-based reasoning neural network for accurate detection of laryngeal lesions, and (3) Develop an adaptive network model for classification of structural laryngeal pathologies including papilloma, polyp, leukoplakia and suspected malignancy. With expertise in the diagnosis and treatment of laryngeal disorders and computer vision, including object detection and classification, our multidisciplinary team is uniquely qualified to complete this project.
项目概要 该项目的长期目标是通过以下方式改善喉部疾病患者的护理 开发办公室内灵活喉镜的自动诊断支持。为了实现这一目标,我们 建议开发基于神经网络的算法来检测和分类喉部结构性病变 喉镜检查图像。我们建议的用于办公室喉镜检查的自动诊断工具将具有 几个好处:(1)它将改善生活在有喉功能障碍症状的患者获得护理的机会 耳鼻喉科资源有限的社区,(2)它将改善喉癌的早期发现 潜在地降低治疗的发病率,并且(3)它将被证明是对学生和学生来说是一个有价值的教学工具 住院医师首先学习解释喉镜检查。 柔性喉镜检查是耳鼻喉科医师进行的一种常见的诊室手术,用于评估上颌骨 有喉功能障碍症状的呼吸消化道患者。外观上的细微差别 喉部病变使耳鼻喉科医师能够区分良性病变和疑似恶性病变。这 正确解释喉镜检查结果的专业知识和临床敏锐度需要多年的培训和 因此,喉镜检查主要只在耳鼻喉专科诊所进行。主要目标 该项目的目的是开发基于神经网络的算法来检测和分类结构性喉部病变。 我们的假设是,这些算法可以使用大型喉部图像数据集进行训练,以准确地 通过灵活的喉镜检查检测和分类喉部结构性病变。为了检验这个假设,我们 提出以下目标:(1)生成高质量、标记的内窥镜喉图像数据集 对应于喉部的正常和结构性病变,(2)开发基于位置感知的锚点 推理神经网络用于准确检测喉部病变,以及(3)开发自适应网络 喉部结构性病变分类模型,包括乳头状瘤、息肉、白斑和 疑似恶性肿瘤。拥有喉疾病诊断和治疗以及计算机方面的专业知识 视觉,包括物体检测和分类,我们的多学科团队具有独特的资格来完成 这个项目。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Discriminative Channel Diversification Network for Image Classification.
  • DOI:
    10.1016/j.patrec.2021.12.004
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Patel, Krushi;Wang, Guanghui
  • 通讯作者:
    Wang, Guanghui
Gender, Smoking History, and Age Prediction from Laryngeal Images.
  • DOI:
    10.3390/jimaging9060109
  • 发表时间:
    2023-05-29
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
  • 通讯作者:
Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations.
结肠镜检查息肉检测和分类:数据集创建和比较评估。
  • DOI:
    10.1371/journal.pone.0255809
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li K;Fathan MI;Patel K;Zhang T;Zhong C;Bansal A;Rastogi A;Wang JS;Wang G
  • 通讯作者:
    Wang G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andres Martin Bur其他文献

Andres Martin Bur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andres Martin Bur', 18)}}的其他基金

Radiogenomic predictors of treatment response in head and neck squamous cell carcinoma
头颈鳞状细胞癌治疗反应的放射基因组预测因子
  • 批准号:
    10879183
  • 财政年份:
    2023
  • 资助金额:
    $ 15.44万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了