The role of autophagy in the escape from replicative crisis and tumorigenesis
自噬在逃避复制危机和肿瘤发生中的作用
基本信息
- 批准号:10040400
- 负责人:
- 金额:$ 16.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AutophagocytosisAwardBindingBioinformaticsBiological MarkersBypassCDKN2A geneCRISPR screenCRISPR/Cas technologyCancer BiologyCell AgingCell Cycle ArrestCell Cycle CheckpointCell DeathCellsComputer AnalysisDNADataDefectDevelopmentDouble MinutesEducational process of instructingExcisionFluorescent in Situ HybridizationFrequenciesFunctional disorderGenesGenome StabilityGenomicsGrantHumanIncidenceIndividualKnock-outKnockout MiceKnowledgeLaboratoriesMalignant - descriptorMalignant NeoplasmsMass Spectrum AnalysisMeasuresMembraneMentorsMentorshipMethodsMolecularMonitorMouse StrainsMusNeoplastic Cell TransformationOncogenicPathway interactionsPhasePlayPrecipitationPredispositionPremalignant CellPreventionProteinsProteomicsResearchResearch Project GrantsRiskRoleSignal PathwayStimulator of Interferon GenesTP53 geneTechnologyTelomere ShorteningTestingTherapeuticTissuesTrainingTraining ActivityTransgenic MiceTumor Suppressor ProteinsWorkWritingbasecancer therapycarcinogenesischromothripsisdesignepigenomicsexpectationgenome sequencinggenome-widein vivoinsightlive cell imagingmouse modelnext generation sequencingnovelreceptorrecruitresponserestraintsenescenceskillssuccesstelomeretranscriptomicstumortumorigenesiswhole genome
项目摘要
Project Summary / Abstract
Tumorigenesis requires cells to bypass or escape two discrete and distinctive anti-proliferative barriers:
replicative senescence and crisis. Senescence is a permanent cell cycle arrest, activated as a primary response
to telomere deprotection and involves stimulation of the tumor suppressor pathways p53-p21WAF1 and/or p16INK4A-
Rb. Disruption of cell-cycle checkpoints renders cells capable of bypassing senescence and continuing
proliferation, while telomeres shorten further. Eventually such cells initiate a terminal response called replicative
crisis, during which critically short telomeres become subject to end-to-end fusions, resulting in massive cell
death. On rare occasion, a small group of cells will emerge spontaneously from crisis and evolve towards
malignancy, yet the mechanisms underlying cell death in crisis and crisis escape are not defined. Dr. Joe Nassour
has recently discovered an unrecognized function for macroautophagy (hereafter autophagy) in the elimination
of cells during crisis. Autophagy is therefore an essential component of the crisis response required for the
removal of cells at risk for malignant transformation. This suggests that autophagy defects can be the molecular
basis for tumorigenesis.
In his Pathway to Independence Award (K99/R00) proposal, Dr. Nassour, together with his Mentor Dr. Jan
Karlseder, and his Co-Mentors Dr. Reuben Shaw, Dr. Martin Hetzer, and Dr. Peter Adams, designed a dedicated
training plan and proposed a research project that sets out to dissect the molecular basis of mammalian
autophagy and its potential therapeutic role in the earliest stages of human cancer. In particular, Dr. Nassour will
focus on deciphering the mechanism of autophagy-dependent cell death in crisis (Aim 1), elucidating the
interplay between autophagy and genome stability (Aim 2), and evaluating the role of autophagy in neoplastic
transformation through crisis escape (Aim 3). The in vivo relevance of Aim 3 will be examined by employing
knockout and transgenic mouse models susceptible to telomere dysfunction-driven carcinogenesis. The
occurrence of cellular crisis in tissues and the impact of autophagy on tumor incidence will be examined. This
research will provide new insights into the function of autophagy in cancer biology, and should provide a rationale
for developing autophagy modulation approaches to ameliorate the efficacy of cancer therapy.
Dr. Nassour’s training plan will provide all the necessary professional development to direct an independent
laboratory using next-generation sequencing (NGS)-based ‘omics’ approaches and transgenic mouse models to
define the mechanisms and function of autophagy in cancer. Training modules in this award include:
Computational analysis and bioinformatics for NGS data, methods for handling and restraint in the mouse,
transgenic mouse technology, and mentorship skills such as teaching and grant writing; which will all be
necessary for the success following the transition to independence.
项目总结/摘要
肿瘤发生需要细胞绕过或逃避两个离散和独特的抗增殖屏障:
复制性衰老和危机。衰老是一种永久性的细胞周期停滞,作为一种主要反应被激活
端粒脱保护,并涉及刺激肿瘤抑制途径p53-p21 WAF 1和/或p16 INK 4A-
RB.细胞周期检查点的破坏使细胞能够绕过衰老并继续
增殖,而端粒进一步缩短。最终这些细胞会启动一种叫做复制的终末反应
危机,在此期间,非常短的端粒会发生端到端融合,导致大量细胞
死亡在极少数情况下,一小群细胞会自发地从危机中出现,
恶性肿瘤,但在危机和危机逃逸的细胞死亡的机制还没有定义。Joe Nassour博士
最近发现了一种未被认识到的功能,巨自噬(以下简称自噬)在消除
细胞在危机中。因此,自噬是危机应对的一个重要组成部分,
去除有恶性转化风险的细胞。这表明自噬缺陷可能是
肿瘤发生的基础。
在他的独立之路奖(K99/R 00)提案中,Nassour博士和他的导师Jan博士
Karlseder和他的共同导师Reuben Shaw博士,Martin Hetzer博士和Peter亚当斯博士设计了一个专门的
培训计划,并提出了一个研究项目,着手剖析哺乳动物的分子基础,
自噬及其在人类癌症早期阶段的潜在治疗作用。尤其是纳苏尔博士
致力于破译危机中自噬依赖性细胞死亡的机制(目标1),阐明
自噬和基因组稳定性之间的相互作用(目的2),并评估自噬在肿瘤发生中的作用。
通过危机逃避实现转型(目标3)。目标3的体内相关性将通过采用
基因敲除和转基因小鼠模型对端粒功能障碍驱动的致癌作用敏感。的
将检查组织中细胞危象的发生以及自噬对肿瘤发病率的影响。这
这项研究将为自噬在癌症生物学中的功能提供新的见解,并应提供一个理论基础。
用于开发自噬调节方法以改善癌症治疗的功效。
博士纳苏尔的培训计划将提供所有必要的专业发展,以指导一个独立的
实验室使用基于下一代测序(NGS)的“组学”方法和转基因小鼠模型,
定义自噬在癌症中的机制和功能。该奖项的培训模块包括:
NGS数据的计算分析和生物信息学,小鼠的处理和约束方法,
转基因小鼠技术,以及指导技能,如教学和拨款写作;这一切都将是
这是向独立过渡后取得成功所必需的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joe Nassour其他文献
Joe Nassour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joe Nassour', 18)}}的其他基金
The role of autophagy in the escape from replicative crisis and tumorigenesis
自噬在逃避复制危机和肿瘤发生中的作用
- 批准号:
10200720 - 财政年份:2020
- 资助金额:
$ 16.31万 - 项目类别:
The role of autophagy in the escape from replicative crisis and tumorigenesis
自噬在逃避复制危机和肿瘤发生中的作用
- 批准号:
10843405 - 财政年份:2020
- 资助金额:
$ 16.31万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
- 批准号:
EP/Z531856/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
- 批准号:
EP/Z531935/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
- 批准号:
EP/Z531947/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
- 批准号:
EP/Z531923/1 - 财政年份:2024
- 资助金额:
$ 16.31万 - 项目类别:
Research Grant