Automating Biomedical Data Analysis
自动化生物医学数据分析
基本信息
- 批准号:10047049
- 负责人:
- 金额:$ 44.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnimal Disease ModelsAnimal ModelArchitectureAreaAstrocytesBig DataBiologicalBiological AssayBiomedical ResearchCellsCellular MorphologyCommunitiesComputer softwareCritical ThinkingCuprizoneDataData AnalysesData SetDemyelinationsDependenceDetectionDevelopmentDiagnosisDiseaseEducationEducational CurriculumElectron MicroscopyEnvironmentFunctional Magnetic Resonance ImagingFundingGenerationsGoalsHealthHumanImageImage AnalysisInfrastructureInterdisciplinary StudyLasersMagnetic ResonanceMagnetic Resonance ImagingManualsMapsMedical ImagingMethodsMicroscopicMicroscopyModalityModelingMorphologyMusNeurogliaOccupationsOutcomePatientsPerformancePhasePhenotypePlayPopulationProcessProteinsResearchResearch ActivityResearch InfrastructureResearch PersonnelResearch TechnicsResolutionResource DevelopmentResourcesRoleRouteSamplingScanningScheduleSeriesSlaveSpeedStatistical MethodsStructureStudentsSystemSystems AnalysisTechniquesTherapeutic InterventionTimeTissue StainsTissuesTrainingUniversitiesalgorithmic methodologiesautomated analysisautomated segmentationbasebioimagingbiomedical scientistcareercareer networkingcluster computingcollegecomplex data computerized data processingdiffusion weighteddiscrete timedisorder preventiongraduate studentimaging systemimprovedinstrumentationlaboratory curriculummethod developmentmultidisciplinarymultimodal datamultimodalitynovel therapeuticsopen sourceprogramsresponseskillsstudent trainingtechnique developmenttool
项目摘要
This project will create automated systems for analyzing big multimodal biomedical data to enhance the
educational and research infrastructure at Kent State University and beyond. The completed tasks will
provide support and improve the ability to analyze data (accuracy and speed) for at least 50 research labs,
as well as train well over 200 students via integration into research programs and the curriculum. We will 1)
Create algorithms to automate processing of large spatial biomedical data to automatically extract and
analyze thousands of cells, 2) Create methods to automate the processing of dynamic magnetic resonance
imaging (MRI) data, 3) Empirically evaluate the new methods in an animal model of disease, and,4)
Generate data relating to changes in cell populations in disease to provide new therapeutic avenues. As
we accomplish these goals we will support and strengthen education in at least three areas; 1) Enhance
student training in biomedical imaging research techniques in three labs, 2) Create recurring multi-
disciplinary courses based around development of the resources including “Applied Biomedical Data
Processing” and “Biological Image Analysis” , and, 3) Develop the infrastructure for continued use and
development for end users with a cluster-based parallelized data processing system for students and
researchers worldwide. Laser scanning and three-dimensional electron microscopy produce data
consisting of thousands of sequential images making up large volumes of data. Functional and structural
MRI systems are routinely used to scan subjects and patients over many months using multiple modalities
(fMRI, diffusion weighted, T1/T2). These types of arrays can have thousands of images and/or discrete
time-points per modality generating complex data requiring significant human time (days) to process where
sub-sampling is frequently required. Our long term goal is to support all types of automated data analysis
pertinent to human health, and as such a major focus of this project is to create an extensible platform and
methods to fully support all computationally expensive data analysis. We will initially focus our efforts on
creating tools for the automated extraction and analysis of glial cells from large microscopy data (massive
spatial tissue maps), automate segmentation and analysis of dynamic MRI data and automate big data
processing using parallel systems. The methods will be used to evaluate changes to cell populations
occurring in an animal model of disease to identify new strategies and manipulations for treatments. This
will significantly enhance the research and educational infrastructure at Kent State University and include
the development of new methods to automate biomedical data analysis as well as resources for the
automated application and continued use of these and existing routines by many research groups. Further,
by the creation of new courses, and integration of the multidisciplinary research activities in diverse labs,
hundreds of students will be trained in the application and development of the methods and techniques.
该项目将创建自动化系统,用于分析大型多模态生物医学数据,以增强生物医学研究
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert J Clements其他文献
Robert J Clements的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert J Clements', 18)}}的其他基金
Multimodal probes for imaging neuroendocrine circuits and the neurovasculature
用于神经内分泌回路和神经血管系统成像的多模态探针
- 批准号:
9757763 - 财政年份:2018
- 资助金额:
$ 44.61万 - 项目类别:
Multimodal probes for imaging neuroendocrine circuits and the neurovasculature
用于神经内分泌回路和神经血管系统成像的多模态探针
- 批准号:
9436591 - 财政年份:2018
- 资助金额:
$ 44.61万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant














{{item.name}}会员




