Corticostriatal mechanisms of causal inference and temporal credit assignment.
因果推理和时间信用分配的皮质纹状体机制。
基本信息
- 批准号:10053605
- 负责人:
- 金额:$ 219.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsBehavioral ParadigmBrainCognitionCompetenceComplexComputer ModelsCorpus striatum structureDimensionsElectrodesElementsEligibility DeterminationEventFeedbackFoundationsFunctional disorderGoalsHumanIndividualLearningLesionLigandsLinkMemoryMental disordersModelingMonkeysNeural Network SimulationNeuronsNeurosciences ResearchOutcomePatientsPatternPopulationPositron-Emission TomographyPrefrontal CortexPrimatesProblem SolvingProcessResearchRoleStreamStructureTestingTimeTime Series AnalysisUpdateWorkbasecaudate nucleuscausal modeldesigner receptors exclusively activated by designer drugsexperienceflexibilityinnovationinsightneuroimagingneuromechanismneurotransmissionnovelpsychiatric symptompsychotic symptomsreceptor expressionrelating to nervous systemtheoriestime use
项目摘要
Learning desired actions from experience requires evaluating alternative actions by integrating the
consequences assigned to each action over time. In the real world, actions and outcomes occur in complex
sequences, and a continuous stream of events must be parsed into appropriate pairs of causative action and
outcome before such pairs can be evaluated. However, how the brain solves this problem, known as temporal
credit assignment (TCA) is unknown. The goal of the proposed project is to use an innovative paradigm and
test novel hypotheses regarding the role of heterogeneous dynamics of memory in the prefrontal cortex in TCA.
In our contextual lagged bandit task, monkeys will choose between three options offered in one of two
alternating contexts, but feedback for a choice in one context will be temporally delayed and delivered after
another choice is made in the other context. Learning optimal choices in this task consists of two parts: causal
inference for learning the causal structure or model of the task, and model-based TCA for learning the value of
each choice. Learning from delayed outcome requires memory of a chosen action or eligibility trace (ET).
Although theories postulate that ET exponentially decays over time (i.e. exp-ET), exp-ET cannot resolve TCA
when causative action is separated from the outcome in time and by irrelevant events. We hypothesize the
flexible dynamics of ET might be crucial for causal inference and model-based TCA.
More specifically, we hypothesize that model-based TCA requires dynamically-modulated ET (dynamic-
ET) which is selectively activated at the predicted time of its outcome to obviate receiving credits from
intervening events. For causal inference, we hypothesize that memory of past actions might be re-activated by
hindsight in search of a new causal link (i.e. hypothetical ET, hyp-ET). We also hypothesize that ET might be
strongly sustained until the lagged feedback (i.e. persistent ET, persist-ET) to test the accuracy of new link at
the expense of confounding intervening inputs. We will investigate how flexible dynamics of ETs might be
supported by heterogeneous dynamics of neural activity across different regions of cortico-striatal network.
First, we will assess whether the primate prefrontal cortex (PFC) provides dynamic-ET for model-based
TCA, whereas the striatum provides exp-ET for contiguity-based TCA. Second, we will assess whether
dorsomedial and dorsolateral PFC provide hyp-ET and persist-ET, respectively. We will take a highly
integrative approach and combine multi-scale neural recordings, perturbations and computational modeling to
examine whether and how complex patterns and dynamics of neural activity in the prefrontal cortex constitute
necessary and sufficient conditions to support model-based TCA. The proposed project will transform the
conventional view of memory as storage, recasting memory as an integral part of learning and reasoning with
temporal dynamics being its key structure. Causal inference is central to dysfunction in the individuals with
psychotic symptoms and our work will contribute to understanding underlying prefrontal pathophysiology.
从经验中学习所需的行动需要通过整合
随着时间的推移,分配给每个动作的后果。在现实世界中,行动和结果发生在复杂的
序列和连续的事件流必须被解析成适当的因果动作对和
在这些配对可以被评估之前的结果。然而,大脑如何解决这个问题,被称为时间
信用分配(TCA)未知。拟议项目的目标是使用创新的范例和
测试关于前额叶皮质异质记忆动力学在TCA中的作用的新假设。
在我们的上下文滞后的强盗任务中,猴子将在两个选项中的一个中选择三个选项
交替的上下文,但对一个上下文中的选择的反馈将暂时延迟,并在
另一种选择是在另一种情况下做出的。在这个任务中学习最优选择包括两个部分:因果
推理用于学习任务的因果结构或模型,以及基于模型的TCA用于学习
每一个选择。从延迟结果中学习需要记忆所选择的行动或资格痕迹(ET)。
虽然理论假设ET随时间呈指数衰减(即EXP-ET),但EXP-ET不能解决TCA
当因果行为与结果在时间上和不相关的事件分开时。我们假设
灵活的ET动力学可能是因果推理和基于模型的TCA的关键。
更具体地说,我们假设基于模型的TCA需要动态调制的ET(动态-
ET),其在其结果的预测时间被选择性地激活以避免从
相互干扰的事件。对于因果推理,我们假设对过去行为的记忆可能通过
后见之明,寻找新的因果联系(即假设的ET,Hyp-ET)。我们还假设外星人可能是
强烈支持直到滞后反馈(即持久ET、持久ET),以测试新链路的准确性
混淆干预投入的代价。我们将调查ETS的灵活性有多大
由皮质-纹状体网络不同区域的神经活动的异质性动力学支持。
首先,我们将评估灵长类前额叶皮质(PFC)是否为基于模型的模型提供动态ET
TCA,而纹状体为基于邻接性的TCA提供了EXP-ET。第二,我们将评估是否
背内侧和背外侧分别提供Hyp-ET和Persistent-ET。我们将采取高度的
综合方法并结合多尺度神经记录、扰动和计算建模来
研究前额叶皮质神经活动的复杂模式和动力学是否以及如何构成
支持基于模型的TCA的充要条件。拟议中的项目将使
传统的将记忆视为存储的观点,将记忆重塑为学习和推理的组成部分
时间动力学是它的关键结构。因果推论是有精神障碍的个体的核心
精神病症状和我们的工作将有助于了解潜在的前额叶病理生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyojung Seo其他文献
Hyojung Seo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyojung Seo', 18)}}的其他基金
Corticostriatal mechanisms of causal inference and temporal credit assignment.
因果推理和时间信用分配的皮质纹状体机制。
- 批准号:
10700738 - 财政年份:2020
- 资助金额:
$ 219.47万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 219.47万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 219.47万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 219.47万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 219.47万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 219.47万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 219.47万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 219.47万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 219.47万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 219.47万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 219.47万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)