The Intersection of Personalized Medicine and Implementation Science to Improve Healthcare Utilization in Cirrhosis
个性化医疗与实施科学的交叉点提高肝硬化医疗保健利用率
基本信息
- 批准号:10055401
- 负责人:
- 金额:$ 18.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Admission activityAlgorithmsBiometryBrainCar PhoneCaregiver supportCaringChronic DiseaseCirrhosisComplementDataData AnalysesData SourcesDatabasesDementiaDisease ManagementEmergency department visitFaceFutureGoalsGuidelinesHealthHealth Care ReformHealth TechnologyHealth systemHealthcareHealthcare SystemsHospitalizationIndividualInterventionLiverLiver diseasesMeasuresMedical RecordsMentorsMentorshipMethodologyMobile Health ApplicationModelingOutcome MeasurePatient EducationPatient Outcomes AssessmentsPatient RightsPatientsPerformancePopulationPredictive FactorProspective StudiesProspective cohortResearchResourcesRiskSymptomsTestingTimeTrainingTranslatingVulnerable Populationsbasebig data managementcohortcostdesignevidence baseexperiencehealth applicationhealth care service utilizationhealth datahigh riskhospital readmissionimplementation scienceimprovedimproved outcomeinnovationinpatient servicemultidimensional datanovelpatient engagementpatient orientedpatient populationperformance testspersonalized medicinepopulation healthpredictive modelingprogramsprospectivereadmission ratesskillssocioeconomicssuccesssuccessful interventiontool
项目摘要
ABSTRACT
Management of cirrhosis is resource-intensive and disproportionately contributes a growing burden on
healthcare. Inpatient care is a sizeable portion of this burden where nearly 30% of admissions result in a
readmission within 30 days. Unfortunately, health system-based interventions successful in reducing
readmission rates face important barriers to dissemination. In order for successful health delivery redesign to
occur, it is important to target the right patient and deliver a tailored intervention. Precisely segmenting patient
populations to identify high utilizers is an important first step. Current readmission prediction models based on
traditional medical records data have weak performance in cirrhosis. Instead, our novel preliminary data correlate
patient reported outcome measures (PROMs) to future healthcare utilization (HCU). Further, the PI’s mentor has
shown that when healthcare systems combine real-time PRO tracking with evidence-based management
algorithms and patient-facing health tools, HCU burden can be reduced. Based on these data, this proposal will
first test the overarching hypothesis that a combination of EHR-based and non-EHR, patient-centered measures
will better identify high utilizers in cirrhosis. Taken a step further, this proposal will also test the hypothesis that
successful, scalable models of care can be translated to high-risk cirrhotics through adaptation of a health
technology tool. We will test these hypotheses via three aims and a robust training plan. Specific Aim #1 will
assess HCU prediction by existing risk models and then utilize a state-wide data source to further refine risk
prediction with liver disease-specific and population health data. Specific Aim #2 will further calibrate prediction
of future HCU using PROMs in a prospective cohort of hospitalized cirrhotics. With the ability to identify a
vulnerable group of cirrhotics from SA#s 1-2, Specific Aim #3 will build on the co-mentor’s (Dr. Boustani)
success in improving HCU in dementia populations by adapting Brain Care Notes, a mobile phone health
application designed to support real-time symptom tracking, care-giver support and engagement to reduce HCU
in those with cirrhosis. Further, while completing these aims, the PI will accomplish 3 interdisciplinary training
goals: 1) develop advanced biostatistical and big data management and analysis skills; 2) acquire experience
in methodologies needed for the study of PROMs; 3) gain expertise in healthcare implementation science
research all under the guidance of a robust mentorship team led by national experts in the proposed fields.
Successful completion of these aims will support the design of a future R01-level intervention that provides
innovative, scalable solutions for the chronic disease management in cirrhosis.
摘要
肝硬化的管理是资源密集型的,并且不成比例地增加了患者的负担。
健康护理住院护理是这一负担的相当大的一部分,其中近30%的入院导致
30天内再入院。不幸的是,基于卫生系统的干预措施成功地减少了
重新接纳率在传播方面面临重大障碍。为了成功地重新设计保健服务,
当发生这种情况时,重要的是要瞄准正确的患者并提供量身定制的干预。精确分割患者
人口,以确定高利用率是一个重要的第一步。当前再入院预测模型基于
传统的病历数据在肝硬化方面表现不佳。相反,我们新的初步数据与
患者报告的结局指标(PROM)与未来医疗保健利用(HCU)。此外,PI的导师
表明当医疗保健系统将联合收割机实时PRO跟踪与循证管理相结合时
算法和面向患者的健康工具,可以减少HCU的负担。根据这些数据,该提案将
首先检验总体假设,即结合基于EHR和非EHR,以患者为中心的措施
将更好地识别肝硬化中的高利用率。更进一步说,这一提议还将检验以下假设:
成功的、可扩展的护理模式可以通过适应健康状况,
技术工具。我们将通过三个目标和一个强大的培训计划来测试这些假设。具体目标#1
通过现有风险模型评估HCU预测,然后利用全州范围的数据源进一步细化风险
预测肝病特异性和人群健康数据。具体目标#2将进一步校准预测
在住院患者的前瞻性队列中使用PROM的未来HCU。有能力识别
来自SA#s 1-2、具体目标#3的弱势群体,将在共同导师(Boustani博士)的基础上建立
通过调整大脑护理笔记(一种移动的电话健康),
旨在支持实时症状跟踪、护理人员支持和参与以减少HCU的应用程序
肝硬化的患者。此外,在完成这些目标的同时,PI将完成3个跨学科培训
目标:1)培养先进的生物统计和大数据管理和分析技能; 2)获得经验
研究PROM所需的方法; 3)获得医疗保健实施科学的专业知识
所有这些研究都在由拟议领域的国家专家领导的强大导师团队的指导下进行。
成功完成这些目标将支持未来R 01级干预措施的设计,
为肝硬化慢性病管理提供创新、可扩展的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Archita P. Desai其他文献
Transfer of peanut allergy from donor to recipient after liver transplant.
肝移植后花生过敏从供体转移到受体。
- DOI:
10.1016/j.aohep.2018.10.006 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
A. Aggarwal;Rilwan Balogun;T. Carr;Archita P. Desai;T. Jie;Jen - 通讯作者:
Jen
Mo1523 – Nash Cirrhosis is a Significant Risk Factor for Recurrent <em>Clostridium Difficile</em> Infection in Hospitalized Patients with Cirrhosis
- DOI:
10.1016/s0016-5085(19)40343-0 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Parkpoom Phatharacharukul;Russell D. Purpura;Devika Gandhi;Huiping Xu;Katie Bickett-Burkhart;Kavish P. Patidar;Lauren Nephew;Archita P. Desai;Marwan S. Ghabril;Naga P. Chalasani;Monika Fischer;Eric Orman - 通讯作者:
Eric Orman
Practice patterns and outcomes associated with intravenous albumin in patients with cirrhosis and acute kidney injury
肝硬化和急性肾损伤患者静脉注射白蛋白的实践模式和结果
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kavish R. Patidar;Mohammad Adibuzzaman;M. Naved;Dylan M. Rodriquez;J. Slaven;A. Grama;Archita P. Desai;E. Gómez;M. Ghabril;L. Nephew;N. Samala;Melissa D. Anderson;N. Chalasani;Eric S. Orman - 通讯作者:
Eric S. Orman
Chronic Liver Disease Mortality Rates And Geographic Variability In The US
美国慢性肝病死亡率和地理差异
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Archita P. Desai - 通讯作者:
Archita P. Desai
Mo1329: PALLIATIVE CARE IS ASSOCIATED WITH IMPROVCED CARE PLANNING BUT RARELY PROVIDED FOR PATIENTS WITH ALCOHOLIC HEPATITIS
- DOI:
10.1016/s0016-5085(22)63608-4 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Hani Shamseddeen;Hisham Wehbe;Haseeb Mohideen;Amy Johnson;Kavish R. Patidar;Archita P. Desai;Eric Orman - 通讯作者:
Eric Orman
Archita P. Desai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Archita P. Desai', 18)}}的其他基金
The Intersection of Personalized Medicine and Implementation Science to Improve Healthcare Utilization in Cirrhosis
个性化医疗与实施科学的交叉点提高肝硬化医疗保健利用率
- 批准号:
10217128 - 财政年份:2020
- 资助金额:
$ 18.17万 - 项目类别:
The Intersection of Personalized Medicine and Implementation Science to Improve Healthcare Utilization in Cirrhosis
个性化医疗与实施科学的交叉点提高肝硬化医疗保健利用率
- 批准号:
10398143 - 财政年份:2020
- 资助金额:
$ 18.17万 - 项目类别:
The Intersection of Personalized Medicine and Implementation Science to Improve Healthcare Utilization in Cirrhosis
个性化医疗与实施科学的交叉点提高肝硬化医疗保健利用率
- 批准号:
10613905 - 财政年份:2020
- 资助金额:
$ 18.17万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.17万 - 项目类别:
Continuing Grant














{{item.name}}会员




