Improving Critical Congenital Heart Disease Screening and Detection of "Secondary" Targets

改善危重先天性心脏病筛查和“次要”目标检测

基本信息

  • 批准号:
    10018507
  • 负责人:
  • 金额:
    $ 19.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT We propose to develop an automated critical congenital heart disease (CCHD) screening algorithm using machine learning techniques to combine non-invasive measurements of perfusion and oxygenation. Oxygen saturation (SpO2)-based screening is the current standard for CCHD screening, however it fails to detect up to 50% of asymptomatic newborns with CCHD or nearly 900 newborns in the United States annually. The majority of newborns missed by SpO2 screening have defects with aortic obstruction, such as coarctation of the aorta (CoA), that do not result in deoxygenated blood entering circulation. Non-invasive measurements of perfusion such as perfusion index (PIx) and pulse oximetry waveform analysis is expected to improve the detection of newborns with defects such as CoA, which is currently the most commonly missed CCHD by SpO2 screening. Both PIx and pulse oximetry waveforms can be measured non-invasively and with the same equipment used for SpO2 screening. Members of our team recently showed that the addition of PIx, a non-invasive measurement of pulsatile blood flow, has the potential to improve CCHD detection otherwise missed by SpO2 screening. However, variability of PIx over brief time periods (seconds) and human error in its interpretation limit its clinical capabilities. Additionally, human error in interpretation of the current SpO2 screening algorithm leads to missed diagnoses and inappropriate testing in healthy newborns. Therefore, an automated SpO2-PIx screening algorithm is needed to both simplify the screening process, and improve detection of defects that are missed with SpO2 screening. In order to achieve that, we will identify the optimal PIx waveforms to create a metric that discriminates between newborns with and without CCHD. We will perform pulse oximetry waveform analysis to identify other non-invasive components with discriminatory capacity for newborns with CCHD. Additionally, we will apply supervised machine learning techniques to automate the algorithm interpretation. The proposed research is significant because an automated SpO2-PIx screening algorithm could save the lives of hundreds of newborns with CCHD that are not diagnosed by SpO2 screening. Additionally, this is innovative as it will be the first automatic interpretation of PIx measurement among newborns with CCHD and merging of automated PIx and SpO2, which will allow for easy implementation at later steps. Through collaboration with four pediatric cardiac centers, we will establish the infrastructure and necessary multidisciplinary relationships to conduct future multicenter studies to evaluate this novel combined SpO2-PIx algorithm on a large scale involving thousands of newborns. Improving the detection of CCHD will require a multidisciplinary approach among all the individuals involved in the care and screening of newborns with CCHD. Additionally, collaboration with engineering and computer sciences will be necessary to automate the SpO2-PIx CCHD screening algorithm.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather M Siefkes其他文献

Heather M Siefkes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather M Siefkes', 18)}}的其他基金

Machine Learning for CCHD Screening using Dynamic Data
使用动态数据进行 CCHD 筛查的机器学习
  • 批准号:
    10588951
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Racial Disparities in Accuracy of Pulse Oximetry
脉搏血氧饱和度准确性的种族差异
  • 批准号:
    10451087
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Racial Disparities in Accuracy of Pulse Oximetry
脉搏血氧饱和度准确性的种族差异
  • 批准号:
    10579316
  • 财政年份:
    2022
  • 资助金额:
    $ 19.22万
  • 项目类别:
Improving Critical Congenital Heart Disease Screening and Detection of "Secondary" Targets
改善危重先天性心脏病筛查和“次要”目标检测
  • 批准号:
    9805011
  • 财政年份:
    2019
  • 资助金额:
    $ 19.22万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了