Quantifying the genetic and environmental factors driving avian influenza spillover

量化导致禽流感蔓延的遗传和环境因素

基本信息

项目摘要

PROJECT SUMMARY Past influenza cross-species transmission events have lead to devastating human pandemics. H5N1 is an avian influenza virus that has caused recurrent, high pathogenicity human infections since 1997. Humans usually acquire H5N1 through interaction with live birds, and mounting evidence suggests that H5N1 circulation in poultry is strongly linked to human infection. Despite this, the genetic and environmental factors that promote H5N1 circulation in poultry remain unknown. A predominant hypothesis is that wild birds seed new viruses into poultry, and humans acquire infection via poultry interaction. However, the rate of transmission between wild birds and poultry has never been estimated. Although certain husbandry practices like outdoor rearing and transport to large, live poultry markets are hypothesized to enhance H5N1 circulation, the relative contributions of these husbandry practices have never been systematically assessed. Finally, virologic studies have produced a catalogue of mutations associated with human adaptation in laboratory and animal studies, which are currently used to query emerging H5N1 strains and assess pandemic risk. However, many human-infecting H5N1 strains lack known markers of adaptation, and it is unclear whether these mutations predict spillover risk in nature. In this proposal, I will use phylogenetic and statistical methods to determine the genetic and environmental drivers of H5N1 cross-species transmission through 3 specific aims. Completion of these projects with my mentors and co-mentors will allow me to achieve my career goal of transitioning to an independent faculty role by the end of the K99 phase. 1. I will use a recently developed structured coalescent model to estimate the rate of H5N1 transmission between wild birds, poultry, and humans. I hypothesize that cross-species transmission occurs frequently between wild birds and poultry, but only a small subset of lineages circulate long-term. I expect to observe ongoing transmission in poultry, but not in humans. 2. I will use phylogenetic and statistical methods to determine the environmental and husbandry practices that promote long-term H5N1 circulation in poultry. I hypothesize that short-term spillover events will be associated with outdoor poultry housing and rice cropping. Long-term establishments will be correlated with poor vaccination coverage and introduction into a large poultry market. 3. Elucidate genetic and phenotypic determinants of cross-species transmission. I will combine the power of a genome-wide scan with phenotypic validation to identify the genetic correlates of avian influenza spillover. I hypothesize that H5N1 lineages that are prone to human spillover will be enriched for mutations experimentally linked to host switching. I predict that our scan will identify mutations that elicit improved human receptor binding, enhanced replication in mammalian cells, and abrogation of interferon production.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louise Hillier Moncla其他文献

Louise Hillier Moncla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louise Hillier Moncla', 18)}}的其他基金

Quantifying the genetic and environmental factors driving avian influenza spillover
量化驱动禽流感蔓延的遗传和环境因素
  • 批准号:
    10688235
  • 财政年份:
    2022
  • 资助金额:
    $ 12.86万
  • 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化导致禽流感蔓延的遗传和环境因素
  • 批准号:
    10659289
  • 财政年份:
    2022
  • 资助金额:
    $ 12.86万
  • 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化驱动禽流感蔓延的遗传和环境因素
  • 批准号:
    10211127
  • 财政年份:
    2020
  • 资助金额:
    $ 12.86万
  • 项目类别:
Quantifying the genetic and environmental factors driving avian influenza spillover
量化导致禽流感蔓延的遗传和环境因素
  • 批准号:
    10593468
  • 财政年份:
    2020
  • 资助金额:
    $ 12.86万
  • 项目类别:

相似海外基金

Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
  • 批准号:
    20K07947
  • 财政年份:
    2020
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
  • 批准号:
    17K19824
  • 财政年份:
    2017
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
  • 批准号:
    25330237
  • 财政年份:
    2013
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
  • 批准号:
    23591741
  • 财政年份:
    2011
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了