Role of Smooth Muscle Calponin in Vascular Pathobiology
平滑肌钙调蛋白在血管病理学中的作用
基本信息
- 批准号:10053587
- 负责人:
- 金额:$ 57.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-07 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAcuteAddressAllelesAmino AcidsAneurysmAnimal Disease ModelsAnimal ModelApolipoprotein EArterial InjuryAtherosclerosisAttentionAttenuatedBacterial Artificial ChromosomesBindingBiological AssayBiologyBlood VesselsCRISPR/Cas technologyCell Differentiation processCell physiologyCellsChronicClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeCompetenceComplementCre driverCytoskeletonDNA biosynthesisDataDifferentiated GeneDiseaseDisease modelEngineeringExhibitsExonsFutureGene ExpressionGene FamilyGene SilencingGenesGeneticGenetic ModelsGenetic TranscriptionGrowthHematological DiseaseHomeostasisHumanImpairmentIn VitroInjuryIntronsIon ChannelKnock-outKnockout MiceLesionLinkLipidsLoxP-flanked alleleMAPK3 geneMediatingModelingMolecularMusMutant Strains MiceMutationNaturePhenotypePhysiologyPoint MutationPositioning AttributeProtein IsoformsProteinsRegulatory ElementReportingRoleSerum Response FactorSignal TransductionSmooth MuscleSmooth Muscle MyocytesSystemTestingThinkingTimeTranscriptional RegulationUntranslated RNAVascular DiseasesVascular Smooth Musclebasecalponincell growthdesignexperimental studygain of functiongene functiongenome editinghuman modelin vivoinjuredinsightknockout geneloss of functionmigrationmouse geneticsmouse modelmyocardinnovelnovel strategiesoverexpressionprogramspromoterresponsescaffoldstructural genomicstooluptakevascular injuryvascular smooth muscle cell migration
项目摘要
There is now incontrovertible evidence from sophisticated lineage tracing studies that vascular smooth muscle
cell (VSMC) de-differentiation contributes substantively to a number of vascular diseases. A major manifesta-
tion of such phenotypic change is attenuated expression of a battery of VSMC-restricted genes, including the
enigmatic smooth muscle calponin (Cnn1) gene. The function of Cnn1 has been studied primarily in vitro or in
a single knockout mouse wherein several exons and introns were replaced with a neo cassette which, as
detailed below, obfuscates accurate interpretation of phenotypes. We have championed the CRISPR-Cas9
genome editing system in mice to engineer subtle substitutions within regulatory elements of many genes,
leaving intact all coding sequences. We report here a remarkable phenotype wherein a single base change of
a single CArG box in the Cnn1 locus abolishes expression of CNN1 in vascular (but not visceral) SMC. Full
expression of CNN1 is restored with a BAC carrying human CNN1 or CRISPR-mediated activation of the en-
dogenous Cnn1 promoter. Cnn1 CArG mutant mice, representing the first animal models of regulatory element
edits, also show elevation in VSMC DNA synthesis and defective contractile competence. Conversely, over-
expression of BAC-CNN1 suppresses VSMC growth, antagonizes neointimal formation, reduces VSMC lipid
uptake, and enhances contractile gene expression. Interestingly, CNN1-Ser175 appears to be a critical residue
for some of these effects making it an attractive amino acid for CRISPR-mediated editing in mice. Additional
data support CNN1 as a scaffold for ERK signaling and effector of the immotile state of differentiated VSMC.
Importantly, a complete understanding of CNN1 function is complicated by robust expression of two related
genes (Cnn2 and Cnn3) in VSMC. We hypothesize that CNN1 functions in concert with other CNN isoforms to
maintain a mature VSMC differentiated state. This hypothesis will be tested in three aims using state-of-the-art
tools in genetics, animal models of disease, and molecular physiology assays of VSMC function. Aim 1 will
exploit the single base edit in Cnn1 as a novel loss-of-function mouse in context of acute and chronic vascular
disease models; complementation studies will be carried out in vitro and in vivo to rigorously ascribe pheno-
typic changes to the specific loss of CNN1. Aim 2 will exploit a well-characterized BAC mouse to elucidate
functions associated with Cnn1 gain-of-function in models of vascular disease used in Aim 1. Complementary
CRISPR editing of the BAC mouse, in background of Cnn1 KO, will afford exquisite insight into functional
residues that mediate CNN1 function. Aim 3 will exploit new floxed Cnn2 and Cnn3 mice with an exciting
VSMC-specific Cre driver we have developed to address, for the first time, triple Cnn KO mouse models at
baseline and in acute or chronic vascular disease models. These studies, based on paradigm-shifting
approaches to gene KOs, serve as a template for the study of other gene families linked to VSMC differen-
tiation and will inform future studies targeting CNN1 in diseases where VSMC differentiation is compromised.
现在有无可争议的证据来自复杂的谱系追踪研究,即血管平滑肌
细胞(VSMC)去分化会导致多种血管疾病。主要宣言
这种表型变化的影响会减弱一系列VSMC限制基因的表达,包括
神秘的平滑肌钙蛋白(CNN1)基因。 CNN1的功能已被研究主要是在体外或
一只单一的淘汰鼠标,其中几个外显子和内含子被一个新盒式盒子代替,该盒子
下面详细说明,对表型的准确解释混淆。我们拥护CRISPR-CAS9
小鼠的基因组编辑系统,以在许多基因的调节元素中设计微妙的取代,
保留完整的所有编码序列。我们在这里报告了一个非凡的表型
CNN1基因座中的一个carg盒消除了血管(但不是内脏)SMC中CNN1的表达。满的
CNN1的表达通过携带人CNN1的BAC或CRISPR介导的En-的激活来恢复
Dogenous CNN1启动子。 CNN1 CARG突变小鼠,代表调节元件的第一个动物模型
编辑,还显示VSMC DNA合成和有缺陷的收缩能力的升高。相反,过度
BAC-CNN1的表达抑制VSMC的生长,拮抗新内膜的形成,减少VSMC脂质
吸收并增强收缩基因表达。有趣的是,CNN1-SER175似乎是关键残留物
对于其中一些效果,使其成为小鼠CRISPR介导的编辑的有吸引力的氨基酸。额外的
数据支持CNN1作为ERK信号传导和分化VSMC的Immotile状态效应子的支架。
重要的是,通过两种相关的鲁棒表达使对CNN1功能的完全理解变得复杂
VSMC中的基因(CNN2和CNN3)。我们假设CNN1与其他CNN同工型一起起作用
保持成熟的VSMC差异化状态。该假设将在三个目标中使用最先进的目的进行检验
VSMC功能的遗传学,疾病动物模型和分子生理测定的工具。目标1意志
在急性和慢性血管的情况下,将CNN1中的单个碱基编辑作为一种新颖的功能丧失鼠标
疾病模型;互补研究将在体外和体内进行严格归纳
CNN1的特定损失的典型变化。 AIM 2将利用良好的BAC小鼠来阐明
在AIM 1中使用的血管疾病模型中与CNN1功能获得的功能。互补
在CNN1 KO的背景下,BAC鼠标的CRISPR编辑将为功能提供精致的见解
介导CNN1功能的残基。 AIM 3将用令人兴奋的
我们开发的VSMC特异性CRE驱动程序是第一次解决三重CNN KO鼠标模型
基线以及急性或慢性血管疾病模型。这些研究,基于范式移动
基因KO的方法,作为研究与VSMC不同的其他基因家族的模板
tiation并将告知针对CNN1在VSMC分化受到损害的疾病中的未来研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph M Miano其他文献
Joseph M Miano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph M Miano', 18)}}的其他基金
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
10337251 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Transcriptional Control of Myocardin and the MYOCARDome
心肌素和 MYOCARDome 的转录控制
- 批准号:
10210425 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Role of Smooth Muscle Calponin in Vascular Pathobiology
平滑肌钙调蛋白在血管病理学中的作用
- 批准号:
10077575 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Transcriptional Control of Myocardin and the MYOCARDome
心肌素和 MYOCARDome 的转录控制
- 批准号:
10059023 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
9764180 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Role of Smooth Muscle Calponin in Vascular Pathobiology
平滑肌钙调蛋白在血管病理学中的作用
- 批准号:
10308708 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
10112303 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
10060485 - 财政年份:2019
- 资助金额:
$ 57.12万 - 项目类别:
Regulation and Function of Myocardin in Vascular Pathobiology
心肌素在血管病理学中的调控和功能
- 批准号:
9042030 - 财政年份:2013
- 资助金额:
$ 57.12万 - 项目类别:
Regulation and Function of Myocardin in Vascular Pathobiology
心肌素在血管病理学中的调控和功能
- 批准号:
8820129 - 财政年份:2013
- 资助金额:
$ 57.12万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 57.12万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 57.12万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 57.12万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 57.12万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 57.12万 - 项目类别: