Cancer-specific gene set testing
癌症特异性基因组测试
基本信息
- 批准号:10058552
- 负责人:
- 金额:$ 45.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAtlasesBioinformaticsBiologicalCancer BiologyCategoriesCell SurvivalCellsCollectionComplexCustomDataData AnalysesData SetDatabasesEntropyGene ClusterGene ExpressionGene Expression ProfileGenesGenomeHumanIceImmuneKnowledgeMaintenanceMalignant NeoplasmsMeasuresMethodsModalityModelingMolecular ProfilingMutagenesisMutationNormal tissue morphologyOncogenesOntologyPartner in relationshipPathway AnalysisPathway interactionsPatternPhenotypeProcessResearch PersonnelResourcesSamplingSolidSolid NeoplasmStructureSupervisionTechniquesTestingTissuesVariantWeightcancer gene expressioncancer genomecancer typecluster computinggene functionimmunogenicimprovedinnovationmultiple omicsnovelpublic repositoryrepositoryresponsetherapeutic targettumor
项目摘要
PROJECT SUMMARY
Cancer develops when pathways controlling cell survival, cell fate or genome maintenance are disrupted
by the somatic alteration of key driver genes. Understanding the mechanism and impact of pathway dis-
ruption is therefore essential for an accurate characterization of cancer biology and identification of ther-
apeutic targets. A common approach for studying pathway dysregulation in cancer involves the analysis
of tumor gene expression data using gene set testing or pathway analysis techniques. Gene set testing
is an effective and widely applied hypothesis aggregation method that uses prior knowledge regarding
gene function to test a smaller number of more biologically meaningful hypotheses and thereby improve
interpretation, replication and power relative to a gene-level analysis. Although the gene set analysis
of large cancer gene expression data sets has successfully identified pathways commonly impacted in
human cancer, existing pathway analysis methods have two important limitations when applied to can-
cer gene expression data. First, most existing gene set collections model the pattern of gene activity
found in normal tissues, which can differ significantly from the pattern found within tumors. Using these
gene sets to analyze cancer gene expression data can result in misleading results with the potential
for a significantly inflated type II error rate. Second, standard gene set testing methods leverage only
the gene expression data for the analyzed samples. Although there are some cancer-specific pathway
analysis methods that consider multiple omics modalities, e.g., expression and mutations, information
regarding the expression of genes in the associated normal tissue is not utilized by existing techniques.
Ignoring normal tissue gene expression can result in a cancer-focused analysis that simply recapitulates
the phenotype of the associated normal tissue rather than capturing cancer-specific activity. To address
these challenges, we will develop novel and innovative bioinformatics algorithms that 1) optimize exist-
ing gene set collections to reflect the pattern of gene activity found in dysplastic tissue, and 2) leverage
information regarding normal tissue gene activity during gene set analysis.
项目摘要
当控制细胞存活、细胞命运或基因组维持的途径被破坏时,
通过关键驱动基因的体细胞改变。了解途径疾病的机制和影响-
因此,破裂对于癌症生物学的准确表征和治疗的鉴定是必不可少的。
瞄准目标。研究癌症中通路失调的一种常见方法是分析
使用基因集测试或途径分析技术来分析肿瘤基因表达数据。基因集测试
是一种有效且广泛应用的假设聚合方法,
基因功能,以测试更少的生物学上有意义的假设,从而提高
解释,复制和权力相对于基因水平的分析。虽然基因组分析
的大型癌症基因表达数据集已经成功地确定了在癌症中通常受影响的途径。
对于人类癌症,现有的途径分析方法在应用于癌症时具有两个重要的局限性,
cer基因表达数据。首先,大多数现有的基因集集合对基因活动的模式进行建模
在正常组织中发现,这可能与肿瘤中发现的模式显著不同。使用这些
分析癌症基因表达数据的基因集可能导致误导性结果,
因为第二类错误率被大大夸大了第二,标准基因集测试方法仅利用
分析样品的基因表达数据。虽然有一些癌症特异性途径
考虑多种组学模式的分析方法,例如,表达和突变,信息
关于相关正常组织中的基因表达的信息没有被现有技术利用。
忽略正常组织基因表达可能导致以癌症为重点的分析,
相关正常组织的表型,而不是捕获癌症特异性活性。解决
这些挑战,我们将开发新颖和创新的生物信息学算法,1)优化现有的-
收集基因集以反映发育异常组织中发现的基因活性模式,以及2)利用
在基因组分析期间关于正常组织基因活性的信息。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CAMML: Multi-Label Immune Cell-Typing and Stemness Analysis for Single-Cell RNA-sequencing
- DOI:10.1142/9789811250477_0019
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Courtney Schiebout;H. R. Frost
- 通讯作者:Courtney Schiebout;H. R. Frost
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hildreth Frost其他文献
Hildreth Frost的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hildreth Frost', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




