Deconstructing Somatic and Visceral Pain using Multimodal Neurobiological and Clinical Markers

使用多模式神经生物学和临床标志物解构躯体和内脏疼痛

基本信息

  • 批准号:
    10058956
  • 负责人:
  • 金额:
    $ 4.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Pain can be categorized as being somatic, which emanates from superficial body structures such as the skin and muscles, or visceral, which emanates from internal organs. The central nervous system (CNS) regulates both somatic and visceral pain. The relevant brain circuitry for pain encompasses a distributed set of regions including the cingulate, insular, frontal, and parietal cortices. Using innovative data analytic algorithms, the coordinated activity within this network of brain regions can be modeled as a connectome. The primary focus for the proposed F99 and K00 work is to better understand the shared and distinct features of the pain connectome in somatic vs. visceral pain. The clinical relevance of somatic and visceral pain is timely. Chronic pain is a major burden to society, as pain management in the U.S. remains poor, primarily due to a lack of understanding of CNS mechanisms behind pain. In many somatic pain conditions such as Fibromyalgia (FM), there is a dysfunction within mutliple CNS regions in the absence of any identifiable peripheral injury, leading to symptoms such as widespread body pain, fatigue, sleep problems, and heightened sensory sensitivity. This phenomenon goes by many terms including pain centralization, central sensitization, and nociplastic pain. Over recent years, there is increasing neurobiological evidence of these processes in visceral pain disorders such as Urologic Chronic Pelvic Pain Syndrome (UCPPS), yet there is still much that is unknown. My overall objective is to identify mechanisms in the connectome that contribute to chronic somatic and visceral pain. My short-term scientific and training goal during the F99 phase is to learn and apply connectome- based analytics to functional Magnetic Resonance Imaging (fMRI) data obtained from somatic pain conditions such as FM, and how non-pharmacologic treatment can modify the connectome. This offers a foundational premise for the long-term goal, which I will complete during the K00 phase, which is to investigate neurobiology of visceral pain of urologic origin, in conditions such as UCPPS and Overactive Bladder Syndrome (OAB). For the study of UCPPS and OAB, I will be leveraging data collected from two major NIDDK-funded multisite research initiatives: the Multidisciplinary Approach to the Study of Pelvic Pain (MAPP) Research Network and the Symptoms of Lower Urinary Tract Dysfunction Research Network (LURN). Combined, the proposed F99 and K00 training plan will allow me to gain expertise and independence as a somatic and visceral pain researcher.
项目总结/摘要 疼痛可以被归类为躯体性的,它来自身体的表面结构,如皮肤 和肌肉,或内脏,从内部器官发出。中枢神经系统(CNS)调节 躯体和内脏的疼痛与疼痛相关的大脑回路包括一组分布的区域 包括扣带、岛叶、额叶和顶叶皮质。使用创新的数据分析算法, 大脑区域网络内的协调活动可以被建模为连接体。主要重点 F99和K 00的工作是为了更好地理解疼痛的共同和不同特征 连接体在躯体疼痛和内脏疼痛中的作用 躯体和内脏疼痛的临床相关性是及时的。慢性疼痛是社会的主要负担, 在美国的管理仍然很差,主要是由于缺乏对中枢神经系统机制的理解, 痛苦在许多躯体疼痛病症中,如纤维肌痛(FM),多个CNS内存在功能障碍。 区域在没有任何可识别的外周损伤,导致症状,如广泛的身体 疼痛、疲劳、睡眠问题和感觉灵敏度提高。这种现象有很多种说法 包括疼痛集中、中枢致敏和伤害性疼痛。近年来,越来越多的 这些过程在内脏疼痛疾病中的神经生物学证据,如泌尿系慢性盆腔疼痛 综合征(UCPPS),但仍然有很多是未知的。 我的总体目标是确定连接体中导致慢性躯体和 内脏疼痛我在F99阶段的短期科学和训练目标是学习和应用连接体- 基于分析从躯体疼痛状况获得的功能性磁共振成像(fMRI)数据 例如FM,以及非药物治疗如何改变连接体。这提供了一个基础 这是我长期目标的前提,我将在K 00阶段完成,即研究神经生物学 泌尿系起源的内脏疼痛,如UCPPS和膀胱过度活动综合征(OAB)。为 在对UCPPS和OAB的研究中,我将利用从NIDDK资助的两个主要多站点收集的数据 研究倡议:骨盆疼痛研究的多学科方法(MAPP)研究网络和 下尿路功能障碍症状研究网络(LURN)F99计划 和K 00培训计划将让我获得专业知识和独立性,作为一个身体和内脏的痛苦 研究员

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ishtiaq Mawla其他文献

Ishtiaq Mawla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ishtiaq Mawla', 18)}}的其他基金

Deconstructing Somatic and Visceral Pain using Multimodal Neurobiological and Clinical Markers
使用多模式神经生物学和临床标志物解构躯体和内脏疼痛
  • 批准号:
    10218166
  • 财政年份:
    2020
  • 资助金额:
    $ 4.06万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.06万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 4.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了