Technology for efficient simulation of cancer cell transport
高效模拟癌细胞运输的技术
基本信息
- 批准号:10059089
- 负责人:
- 金额:$ 37.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBehaviorBiomedical ResearchBiophysicsBlood VesselsBlood flowCancer BiologyCause of DeathCell CommunicationCell modelCellsCellular biologyCessation of lifeCodeCollaborationsCommunitiesComplementComplexComputer ModelsComputersDataDevelopmentDevicesDiagnosticDisease ProgressionDisseminated Malignant NeoplasmExhibitsExtravasationFosteringFutureGeometryGoalsIn VitroIndividualInfrastructureIntuitionKnowledgeLeadLinkLiquid substanceLocationMalignant NeoplasmsMethodsMicrofluidic MicrochipsModelingMorphologyMovementNeoplasm Circulating CellsNeoplasm MetastasisOutcomes ResearchPatientsPatternPenetrationPlant RootsProcessPropertyResearchResearch PersonnelResolutionRoleScientistSiteSoftware FrameworkSoftware ToolsStructureTechnologyTestingTherapeuticTumor Cell MigrationUnited StatesVascular SystemWorkanticancer researchbasebiomechanical modelbiophysical propertiesbioprintingcancer cellcell behaviorcell motilitycell typecomputer infrastructurecomputing resourcesexperienceexperimental studyhydrodynamic modelin silicoinsightinterestmanmathematical modelmechanical propertiesnovel diagnosticsnovel therapeuticsopen sourcepredictive modelingsimulationtooltumor
项目摘要
Cancer is the attributed cause of death in one in four cases in the United States and metastasis,
a complex multistep process leading to the spread of tumors, is responsible for more than 90%
of these deaths. However, predicting the location of these secondary tumor sites is still an
elusive goal. One of the fundamental hurdles is to understand the trajectory of cell movement
through the vascular system and the likelihood of penetration of the vessel wall. Studies have
demonstrated that more than 50% of cancer metastatic sites could be explained by the blood
flow pattern between the primary and secondary; however, the development of predictive
models is still needed. Insight into the underlying mechanisms of cancer metastasis will provide
insight into disease progression and lead to the development of new diagnostic or therapeutic
methods targeting regions of the vasculature likely to incur secondary tumor sites.
Tools that can be easily tuned to allow not only patient-specific but cell-specific modeling would
complement ongoing in vitro experiments and provide this critical insight. Such computational
models would allow researchers to probe the influence of different biophysical properties on
cancer-specific cell behavior without the need for either expensive experimental trials for each
cell-type or extrapolate from findings for one cancer to apply to another. An expected outcome
of this research to create a usable, scalable, and extensible software framework for use by the
wider biomedical research community to study the role of biophysical properties on a cell's
transport and potential arrest. On such a platform, users will be able to introduce models of
their cells-of-interest and perform simulations on them with models we (or others in the
community) have developed. The ability to seamlessly introduce new cell-types with minimal
effort will foster entirely new collaborations between researchers and provide biologists who
would not traditionally leverage computational resources to study cell-specific properties in the
context of realistic vascular geometries. This work will set the stage for future studies expanding
the capabilities of this open source model.
在美国四分之一的病例中,癌症是导致死亡和转移的原因,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda E Randles其他文献
Amanda E Randles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda E Randles', 18)}}的其他基金
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10373696 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Dynamic models of the cardiovascular system capturing years, rather than heartbeats
心血管系统的动态模型捕捉的是岁月,而不是心跳
- 批准号:
10708040 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10681210 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Dynamic models of the cardiovascular system capturing years, rather than heartbeats
心血管系统的动态模型捕捉的是岁月,而不是心跳
- 批准号:
10487819 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Technology for efficient simulation of cancer cell transport
高效模拟癌细胞运输的技术
- 批准号:
10460591 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Technology for efficient simulation of cancer cell transport
高效模拟癌细胞运输的技术
- 批准号:
10239243 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Toward coupled multiphysics models of hemodynamics on leadership systems
领导系统血流动力学耦合多物理场模型
- 批准号:
9142377 - 财政年份:2014
- 资助金额:
$ 37.07万 - 项目类别:
Toward coupled multiphysics models of hemodynamics on leadership systems
领导系统血流动力学耦合多物理场模型
- 批准号:
8796995 - 财政年份:2014
- 资助金额:
$ 37.07万 - 项目类别:
Toward coupled multiphysics models of hemodynamics on leadership systems
领导系统血流动力学耦合多物理场模型
- 批准号:
8931819 - 财政年份:2014
- 资助金额:
$ 37.07万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.07万 - 项目类别:
Research Grant