Mitochondrial Biogenesis in Kidney Disease
肾脏疾病中的线粒体生物发生
基本信息
- 批准号:10062945
- 负责人:
- 金额:$ 46.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-27 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute Renal Failure with Renal Papillary NecrosisAddressAnabolismAnimalsAreaAttenuatedAwardBiogenesisBiologyBiosensorBlood flowCRISPR/Cas technologyCell DeathCell RespirationCell modelCell physiologyCellsChronic Kidney FailureClinicalCommunitiesComplexConsumptionDisease modelDoseEnergy MetabolismEnzymesExhibitsFundingGenesGenetic ModelsHealthHomeostasisHumanImpairmentIndividualInjuryInjury to KidneyIschemiaKidneyKidney DiseasesKnockout MiceLaboratoriesMendelian disorderMetabolicMetabolic PathwayMetabolismMinorMitochondriaModelingNatural HistoryNiacinamideNicotinamide adenine dinucleotideOrganOutcomeOutputPPAR gammaPathway interactionsPositioning AttributePublic HealthRecoveryRecovery of FunctionRenal tubule structureReperfusion TherapyResearchResistanceRisk FactorsRoleSepsisSpeedStressSyndromeTestingTherapeuticTransgenic MiceTubular formationWorkbasefallsfortificationfrontierin vivoinnovationkidney celllipidomicsloss of functionmetabolic abnormality assessmentmetabolomicsmimeticsnovelpreventpublic health relevancerenal ischemiaresponsesepticsolutestressorsystemic inflammatory responsetherapeutic targettooltranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY
Acute kidney injury (AKI) is a growing public health burden. The syndrome itself is occurring in more diverse
contexts and the long-term sequelae of AKI include chronic kidney disease (CKD). More than ever then, AKI
research must identify candidate pathways that can be assessed and targeted in humans. In the first four years
of this award, the applicant's laboratory has found that the mitochondrial biogenesis regulator, PGC1α
(PPARγ-coactivator-1α), confers robust resistance to simple, common acute stressors that culminate in AKI
such as acute systemic inflammation and renal ischemia. Moreover, we have observed that renal PGC1α
expression is markedly suppressed in human AKI. Finally, we have implicated a novel downstream effector
pathway for PGC1α—biosynthesis of the energy carrier nicotinamide adenine dinucleotide (NAD+). Based
upon these results, we hypothesize that the PGC1α-NAD+ pathway may be a critical determinant of metabolic
defense against diverse renal tubular insults. To test this concept in ways that advance both our fundamental
understanding of this emerging candidate and that catalyze translational efforts, we propose three parallel
aims: (1) identify when in the CKD-AKI spectrum tubular PGC1α induction is most beneficial; (2) critically
evaluate the role of NAD+ biosynthetic pathways in experimental AKI downstream of PGC1α; and (3) dissect
the relative contributions of mitochondrial biogenesis versus NAD+ biosynthesis in the metabolic protection
conferred by PGC1α. To accomplish this, our team is composed of individuals possessing complementary
expertise with a proven track record of collaborating to investigate metabolism in AKI. We have developed a
suite of tools ranging from metabolomics and lipidomics applications to gene-edited cells to function-
ultrastructure analysis of mitochondria. The output from the proposed aims will advance our understanding of
how renal tubular metabolism bridges CKD and AKI; identify specific contexts in which PGC1α-NAD+ should
be pursued clinically; and deepen our fundamental understanding of PGC1α and NAD+ in renal health. In
concert with a growing number of outstanding groups investigating renal metabolism, it is our hope that the
proposed studies help expand this new frontier in renal biology.
项目概要
急性肾损伤(AKI)是日益严重的公共卫生负担。该综合征本身发生在更加多样化的人群中
AKI 的背景和长期后遗症包括慢性肾脏病 (CKD)。 AKI 比以往任何时候都更
研究必须确定可以在人类中评估和靶向的候选途径。在最初的四年里
在该奖项中,申请人的实验室发现线粒体生物合成调节因子PGC1α
(PPARγ-coactivator-1α),对最终导致 AKI 的简单、常见急性应激源具有强大的抵抗力
如急性全身炎症、肾缺血等。此外,我们观察到肾PGC1α
在人类 AKI 中表达明显受到抑制。最后,我们暗示了一种新颖的下游效应器
PGC1α 途径——能量载体烟酰胺腺嘌呤二核苷酸 (NAD+) 的生物合成。基于
根据这些结果,我们假设 PGC1α-NAD+ 途径可能是代谢的关键决定因素
防御多种肾小管损伤。以推进我们的基本原则的方式测试这一概念
为了理解这一新兴候选者并促进转化努力,我们提出了三个并行的方案
目的:(1) 确定在 CKD-AKI 谱中何时诱导肾小管 PGC1α 最有益; (2) 批判性地
评估 NAD+ 生物合成途径在 PGC1α 下游实验性 AKI 中的作用; (3) 解剖
线粒体生物发生与 NAD+ 生物合成在代谢保护中的相对贡献
由 PGC1α 赋予。为了实现这一目标,我们的团队由具有互补性的个人组成
拥有丰富的专业知识,在合作研究 AKI 代谢方面拥有良好的记录。我们开发了一个
一套工具,范围从代谢组学和脂质组学应用到基因编辑细胞再到功能-
线粒体超微结构分析。拟议目标的产出将增进我们对
肾小管代谢如何连接 CKD 和 AKI;确定 PGC1α-NAD+ 应该使用的特定环境
进行临床研究;加深我们对 PGC1α 和 NAD+ 在肾脏健康中的基本了解。在
与越来越多研究肾脏代谢的杰出团体合作,我们希望
拟议的研究有助于扩大肾脏生物学的这一新领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samir M Parikh其他文献
Putting pressure on pre-eclampsia
对先兆子痫施加压力
- DOI:
10.1038/nm0808-810 - 发表时间:
2008-08-01 - 期刊:
- 影响因子:50.000
- 作者:
Samir M Parikh;S Ananth Karumanchi - 通讯作者:
S Ananth Karumanchi
Samir M Parikh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samir M Parikh', 18)}}的其他基金
Tie2-driven vascular control in critical illness
危重疾病中 Tie2 驱动的血管控制
- 批准号:
10705391 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Tie2-driven vascular control in critical illness
危重疾病中 Tie2 驱动的血管控制
- 批准号:
10539770 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:
Tie2-driven vascular control in critical illness
危重疾病中 Tie2 驱动的血管控制
- 批准号:
10611529 - 财政年份:2018
- 资助金额:
$ 46.61万 - 项目类别:














{{item.name}}会员




