Twin Modeling of Individual Symptoms of Depression and Generalized Anxiety: A Symptom Network Approach

抑郁症和广泛性焦虑个体症状的孪生模型:症状网络方法

基本信息

  • 批准号:
    10065869
  • 负责人:
  • 金额:
    $ 4.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-16 至 2022-09-15
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The goals of this fellowship are to further develop the applicant's knowledge and skills in advanced computational methods (i.e., twin modeling and network modeling), the comorbidity of Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD), and basic neuroscience and genetics. In line with these goals, a cornerstone of the applicant's training will be the statistical and theoretical training he receives through workshops, coursework, annual visits to Virginia Commonwealth University (VCU) to meet with Drs. Gillespie and Neale, regular sponsor and co-sponsor meetings, and professional development activities. The project will serve as the applicant's dissertation and help him pursue his goal of becoming an independent investigator who uses advanced computational analyses of large datasets and multi-method laboratory studies to study the etiology, maintenance, and recurrence of phenotypes of depression and anxiety. In addition to the skills to be gained by the applicant, the project's goals will greatly advance the understanding of MDD and GAD symptom etiology by testing the central tenet of a novel theory of psychopathology (network theory). Understanding the causes of symptoms and their covariance is critical, as different causal models have markedly different implications for intervention. Additionally, the study is consistent with the NIMH's strategic objective to define mechanisms of complex behaviors and NIH's increased emphasis on replicability. Several twin studies have estimated the genetic and environmental etiology of individual MDD symptoms. However, no studies have considered the possibility of causal relationships between symptoms as hypothesized by the network theory. The present study will therefore use a novel method - direction of causation (DoC) modeling - of twin data to (1) test putative causal relationships between individual MDD and GAD symptoms and estimate the contributions of genetics and environment to each symptom, (2) evaluate the replicability of the best fitting model in aim 1 in an independent twin sample, and (3) explore sex differences in the phenotypic causal pathways and genetic and environmental liabilities of each symptom. This project greatly extends prior studies of individual MDD symptoms by testing putatively causal pathways hypothesized by the network theory and including both MDD and GAD symptoms in the same model, which is important given their high comorbidity and potential causal relationships between symptoms of the two disorders. Mentorship for this project will be provided by experts in the areas of twin and DoC modeling, network theory and modeling, the comorbidity of depressive and anxiety disorders, and neuroscience (sponsors: Shankman, Gillespie, and Fried; OSCs: Neale, Roitman). This fellowship will not only be an important step in the applicant's research career, but the proposed study's primary objective of testing different causal models of symptom co-occurrence and quantifying the genetic and environmental contributions to each symptom will have important implications for the prevention and treatment of MDD and GAD symptoms and for theories of symptom etiology.
项目概要/摘要 该奖学金的目标是进一步发展申请人的高级知识和技能 计算方法(即双胞胎建模和网络建模),重度抑郁症的共病 疾病(MDD)和广泛性焦虑症(GAD),以及基础神经科学和遗传学。符合 为了实现这些目标,申请人接受的统计和理论培训将是其培训的基石 通过研讨会、课程作业、每年访问弗吉尼亚联邦大学 (VCU) 与 Drs 会面。 Gillespie 和 Neale、定期发起人和联合发起人会议以及专业发展活动。这 该项目将作为申请人的论文,帮助他实现成为独立的目标 使用大型数据集和多方法实验室研究的高级计算分析的研究者 研究抑郁和焦虑表型的病因、维持和复发。除了 申请人将获得的技能,该项目的目标将极大地促进对 MDD 的理解和 通过测试精神病理学新理论(网络理论)的中心原则来研究广泛性焦虑症(GAD)症状的病因。 了解症状的原因及其协方差至关重要,因为不同的因果模型具有 对干预的影响明显不同。此外,该研究与 NIMH 的战略一致 NIH 的目标是定义复杂行为的机制,并且越来越重视可复制性。 几项双胞胎研究评估了个体 MDD 的遗传和环境病因 症状。然而,没有研究考虑过症状之间因果关系的可能性: 网络理论的假设。因此,本研究将使用一种新颖的方法——方向 因果关系 (DoC) 建模 - 双胞胎数据 (1) 测试个体 MDD 和 GAD 症状并估计遗传和环境对每种症状的贡献,(2) 评估 目标 1 中最佳拟合模型在独立双胞胎样本中的可复制性,以及 (3) 探索性别差异 每种症状的表型因果途径以及遗传和环境因素。这个工程大大 通过测试假设的因果路径,扩展了先前对个体 MDD 症状的研究 网络理论,将 MDD 和 GAD 症状纳入同一模型中,这一点很重要,因为它们 两种疾病的症状之间的高合并症和潜在因果关系。为此提供辅导 项目将由双胞胎和 DoC 建模、网络理论和建模、 抑郁症和焦虑症的共病以及神经科学(发起人:Shankman、Gillespie 和 Fried; OSC:Neale、Roitman)。该奖学金不仅将是申请人研究生涯中的重要一步, 但拟议研究的主要目标是测试症状共现的不同因果模型和 量化遗传和环境对每种症状的影响将对 MDD 和 GAD 症状的预防和治疗以及症状病因学理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carter Funkhouser其他文献

Carter Funkhouser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carter Funkhouser', 18)}}的其他基金

Twin Modeling of Individual Symptoms of Depression and Generalized Anxiety: A Symptom Network Approach
抑郁症和广泛性焦虑个体症状的孪生模型:症状网络方法
  • 批准号:
    10212917
  • 财政年份:
    2020
  • 资助金额:
    $ 4.04万
  • 项目类别:

相似海外基金

Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 4.04万
  • 项目类别:
    Launchpad
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
  • 批准号:
    10677075
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Understanding the Effects of Adolescent Nicotine Exposure on Increased Risk for Mood and Anxiety Disorders: Bridging the Gap from Pre-Clinical to Clinical Investigations
了解青少年尼古丁暴露对情绪和焦虑障碍风险增加的影响:弥合临床前研究与临床研究之间的差距
  • 批准号:
    478121
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
    Operating Grants
Addressing perinatal mood and anxiety disorders (PMADs) through a doula intervention
通过导乐干预解决围产期情绪和焦虑障碍 (PMAD)
  • 批准号:
    10861961
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Evaluation of the effectiveness and implementation of online group cognitive behavioral therapy for perinatal women with anxiety disorders.
评估在线团体认知行为治疗对患有焦虑症的围产期妇女的有效性和实施情况。
  • 批准号:
    22KJ3164
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating the error-related negativity and the balance N1 in children with anxiety disorders
调查焦虑症儿童的错误相关消极性和平衡 N1
  • 批准号:
    10685283
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
RESONY: Digital therapeutic to manage anxiety disorders
RESONY:管理焦虑症的数字疗法
  • 批准号:
    10042996
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
    Grant for R&D
Augmenting the Efficacy of Benzodiazepine Taper with Telehealth-Delivered Cognitive Behavioral Therapy for Anxiety Disorders in Patients Using Prescription Opioids
通过远程医疗提供的认知行为疗法来增强苯二氮卓类药物逐渐减少的疗效,以治疗使用处方阿片类药物的焦虑症患者
  • 批准号:
    10705005
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
Developing an adjunctive mobile application for co-morbid substance use and anxiety disorders: comprehensive user experience testing of the Unwinding Anxiety application
开发针对共病药物使用和焦虑症的辅助移动应用程序:Unwinding Anxiety 应用程序的综合用户体验测试
  • 批准号:
    10597521
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
Investigating the role of neuroinflammation in environmental exposure-induced anxiety disorders
研究神经炎症在环境暴露诱发的焦虑症中的作用
  • 批准号:
    10573948
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了