Morphological and Molecular Development of Efferent Innervation of the Cochlea
耳蜗传出神经支配的形态和分子发育
基本信息
- 批准号:10066467
- 负责人:
- 金额:$ 6.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acoustic TraumaAcousticsAddressAffectAfferent NeuronsAuditoryAuditory systemAxonBindingBioinformaticsBrain StemCandidate Disease GeneCell CommunicationCell NucleusCellsCochleaCochlear nucleusCommunitiesComplexDataData AnalysesDevelopmentDevelopmental ProcessEmbryoEnsureEnvironmentEphrin-A5EphrinsFeedbackFiberGeneticGenetic RecombinationGenetic TranscriptionGroup MeetingsHearingImage AnalysisInner Hair CellsKnowledgeLabelLabyrinthLateralLightMedialMediatingMolecularMolecular GeneticsMorphologyMotor NeuronsMusMutant Strains MiceNeurobiologyNeuronsNoiseOuter Hair CellsPatternPeripheralPeripheral Nervous SystemPlayPositioning AttributeProcessResearchResearch TrainingRodentRoleSeriesShapesSynapsesTestingTimeTrainingaxon growthaxon guidanceaxonal pathfindingbasecareercell typecholinergicconditional knockoutdifferential expressiongenetic approachinsightlateral superior olivemutantnerve supplyneurodevelopmentneuron developmentneuronal cell bodypostnatalquantitative imagingsingle-cell RNA sequencingskillsspiral ganglionstudent mentoringsymposiumtooltrapezoid body
项目摘要
Project Summary
Olivocochlear neurons (OCNs) reside in the auditory brainstem and project to the cochlea, providing efferent
innervation in addition to the afferent circuitry of the spiral ganglion neurons (SGNs), housed within the
cochlea. OCNs protect the cochlea from noise damage and modulate acoustic input, and alignment between the
afferent and efferent components of auditory circuitry is crucial for proper auditory functioning. OCNs are
composed of medial olivocochlear neurons (MOCs) and lateral olivocochlear neurons (LOCs), which innervate
the outer hair cells (OHCs) and SGNs, respectively. MOC axons arrive in the cochlea before LOCs and
transiently innervate inner hair cells (IHCs) during an important period of development of the SGN afferent
circuitry. MOCs are therefore in a prime position to influence both the development of SGNs and later-arriving
OCN axons.
A lack of genetic access to MOCs and LOCs has so far hindered progress in identifying the cell-cell interactions
between OCNs and SGNs during early cochlear development, leaving many open questions about how central
and peripheral components of the auditory system align. This research training plan will use newly identified
genetic tools to selectively label and perturb OCNs in order to address the hypothesis that early arriving OCN
axons interact with SGNs and IHCs to shape the development of cochlear circuitry. Aim 1 will use early
induction of recombination in RetCreER mice to sparsely and selectively label the first MOC axons to enter the
cochlea. Labeled OCN fibers and synapses will be analyzed to provide a detailed account of key interactions
between MOC axons and SGNs and IHCs. Aim 2 will first transcriptionally profile embryonic MOCs and LOCs
using single-cell RNA-sequencing to identify Ephs, ephrins, and other molecules that may guide OCN
development. Finally, efferent/afferent wiring will be assessed in EphA4 and ephrin-A5 mutants to shed light
on efferent pathfinding mechanisms and how EphA4/ephrin-A5 interactions mediate multiple aspects of
cochlear circuitry. Results from these studies will reveal important morphological and molecular interactions
between OCN axons and other cells in the cochlea that establish a functioning auditory circuit.
The research training plan will provide extensive training in the auditory system, molecular genetics
approaches, quantitative image analysis, and basic bioinformatics. Additionally, the training plan will offer
professional development opportunities, including mentoring students and presenting research at small group
meetings, departmental talks, and conferences. The skills developed under this plan will pave the way for an
independent research career in the field of auditory neurobiology, studying the role of axon-axon interactions
in the development of auditory circuitry.
项目摘要
橄榄耳蜗神经元(olivoclearneurons,OCN)位于听性脑干并投射到耳蜗,提供传出神经元的功能。
神经支配除了螺旋神经节神经元(SGN)的传入电路,容纳在
耳蜗OCN保护耳蜗免受噪声损伤,并调节声输入,
听觉回路的传入和传出成分对于适当的听觉功能是至关重要的。OCN是
由内侧橄榄耳蜗神经元(MOCs)和外侧橄榄耳蜗神经元(LOCs)组成,它们支配
外毛细胞(OHC)和SGN。MOC轴突在LOC之前到达耳蜗,
在SGN传入神经发育的重要时期短暂支配内毛细胞(IHC)
电路因此,MOC处于影响SGN发展和晚到SGN的主要位置。
OCN轴突。
到目前为止,缺乏对MOCs和LOCs的遗传访问阻碍了识别细胞间相互作用的进展
在早期耳蜗发育过程中,OCN和SGN之间存在着许多悬而未决的问题,
和听觉系统的外围组件对齐。本研究培训计划将使用新确定的
遗传工具来选择性地标记和干扰OCN,以解决早期到达OCN的假设,
轴突与SGN和IHC相互作用以形成耳蜗回路的发育。Aim 1将提前使用
在RetCreER小鼠中诱导重组,以稀疏地和选择性地标记第一个MOC轴突进入
耳蜗标记的OCN纤维和突触将被分析,以提供关键相互作用的详细说明
之间的联系。目的2将首先转录分析胚胎MOCs和LOCs
使用单细胞RNA测序来鉴定Ephs,ephrin和其他可能引导OCN的分子
发展最后,将在EphA 4和ephrin-A5突变体中评估传出/传入神经连接,以阐明
传出寻路机制以及EphA 4/ephrin-A5相互作用如何介导
耳蜗电路这些研究的结果将揭示重要的形态和分子相互作用
OCN轴突和耳蜗中其他细胞之间建立起一个功能性听觉回路。
研究培训计划将提供广泛的培训,在听觉系统,分子遗传学,
方法,定量图像分析和基础生物信息学。此外,培训计划将提供
专业发展机会,包括指导学生和在小组中展示研究
会议、部门会谈和会议。根据该计划开发的技能将为
在听觉神经生物学领域的独立研究生涯,研究轴突-轴突相互作用的作用
听觉回路的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austen Anne Sitko其他文献
Austen Anne Sitko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austen Anne Sitko', 18)}}的其他基金
Morphological and Molecular Development of Efferent Innervation of the Cochlea
耳蜗传出神经支配的形态和分子发育
- 批准号:
10409742 - 财政年份:2020
- 资助金额:
$ 6.74万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 6.74万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 6.74万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 6.74万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




