Signal transduction mechanisms that mediate normal and pathologic angiogenesis
介导正常和病理性血管生成的信号转导机制
基本信息
- 批准号:10064095
- 负责人:
- 金额:$ 43.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-04 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimal ModelApoptosisAttenuatedBindingBiological AssayBiological ProcessBlood VesselsCell ProliferationCell physiologyCellsCessation of lifeChronicCleaved cellCommunicationDNA Sequence AlterationDataDiseaseEctopic ExpressionEndothelial CellsExtracellular DomainFibrosisFunctional disorderGrantHeart failureHumanHuman GeneticsHypoxiaImmuneImpairmentIn VitroInflammationInterleukin-1InterleukinsKnockout MiceKnowledgeLigandsLinkLipidsLungMediatingMembraneModelingMolecularMonocrotalineMusPathogenesisPathologic NeovascularizationPatientsPlasmaProgressive DiseaseRattusRecombinantsRegulationRoleSignal TransductionSmall Interfering RNATNF geneTestingTherapeuticTherapeutic EffectVascular Endothelial CellVascular remodelingbasecytokineexperiencehemodynamicsimprovedin vivoinhibitor/antagonistmRNA Expressionmonocytenanoparticlenotch proteinnovelnovel therapeutic interventionpressurepreventprotein expressionpulmonary arterial hypertensionreceptorsystemic inflammatory responsevasoconstriction
项目摘要
Title of the grant
Signal transduction mechanisms that mediate normal and pathologic angiogenesis
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease, characterized by vasoconstriction, cell
proliferation, and fibrosis, leading to elevated pulmonary arterial pressure and often causing right heart failure
and death. There is no cure for this disease. Therefore, novel mechanistic studies and new therapeutic strategies
are urgently needed. Elevation of plasma cytokines in PAH patients is a hallmark of inflammation. As the major
effector, monocytes release cytokines and infiltrate in perivascular regions of the lung. Depletion of monocytes
attenuates vascular remodeling and hemodynamic changes in PAH animal models. This evidence implies a
communication between monocytes and endothelial cells (ECs). However, the underlying mechanisms are not
well understood. The objective of the current proposal is to define the role of extracellular domain of cleaved
delta like 4 (exDll4) in the pathogenesis of PAH and its mechanisms. In vitro, we discovered that calpain1 can
cleave Dll4. We also found that TNF and IL-1 increases Dll4 expression, Dll4 cleavage in human monocyte,
and exDll4 release from monocytes. Furthermore, we found that recombinant exDll4 significantly increased
apoptosis and decreased barrier function in ECs. Seeking the mechanism of action, we found exDll4 associated
with intact Dll4, and this interaction prevents Dll4 binding to Notch1 and thus inhibits Notch1 activation. In vivo,
we found that Dll4 expression and exDll4 release in monocyte are significantly elevated in PAH mice as well as
in PAH patients. However, Notch1 signaling is decreased in lungs during PAH progression in mice and rats.
Based on these findings, we hypothesize that exDll4 derived from monocytes is crucial for PAH progression by
inducing apoptosis and impairing barrier function in lung EC. Mechanistically, exDll4 forms a heterodimer with
Dll4 to prevent the association of Dll4 and Notch1, blocking Notch1 signaling. To test our hypothesis, we propose
three aims. Aim 1. Define the regulatory mechanisms of Dll4 expression and exDll4 release from monocyte in
PAH. Aim 2. Determine the biological function of exDll4-Notch1 in lung EC and its molecular mechanisms. Aim
3. Characterize the therapeutic effects of inhibiting monocyte Dll4 on PAH progression. Accomplishing these
aims will 1) fill the knowledge gap regarding the mechanisms of vascular remodeling and EC dysfunction in the
pathogenesis of PAH mediated by monocyte derived exDll4; 2) reveal the regulation of Dll4 cleavage; and 3)
invent a novel therapeutic strategy for PAH by targeting monocyte Dll4.
补助金名称
介导正常和病理性血管生成的信号转导机制
抽象的
肺动脉高压(PAH)是一种进行性疾病,其特征是血管收缩、细胞
增殖和纤维化,导致肺动脉压升高并常常导致右心衰竭
和死亡。这种疾病无法治愈。因此,新的机制研究和新的治疗策略
是迫切需要的。 PAH 患者血浆细胞因子升高是炎症的标志。作为主要
作为效应器,单核细胞释放细胞因子并浸润肺血管周围区域。单核细胞耗竭
减弱 PAH 动物模型中的血管重塑和血流动力学变化。这个证据意味着
单核细胞和内皮细胞(EC)之间的通讯。然而,根本机制并不
很好理解。当前提案的目标是定义切割的细胞外结构域的作用
Delta Like 4 (exDll4) 在 PAH 发病机制及其机制中的作用。在体外,我们发现 calpain1 可以
切割 Dll4。我们还发现 TNF 和 IL-1 会增加人单核细胞中 Dll4 的表达、Dll4 的裂解,
和 exDll4 从单核细胞中释放。此外,我们发现重组 exDll4 显着增加
EC 细胞凋亡和屏障功能下降。寻找作用机制,我们发现exDll4相关
与完整的 Dll4 结合,这种相互作用阻止 Dll4 与 Notch1 结合,从而抑制 Notch1 激活。体内,
我们发现单核细胞中 Dll4 的表达和 exDll4 的释放在 PAH 小鼠以及
在 PAH 患者中。然而,在小鼠和大鼠的 PAH 进展过程中,Notch1 信号在肺部减弱。
基于这些发现,我们假设源自单核细胞的 exDll4 对于 PAH 进展至关重要
诱导细胞凋亡并损害肺 EC 的屏障功能。从机制上讲,exDll4 与
Dll4阻止Dll4和Notch1的关联,阻断Notch1信号传导。为了检验我们的假设,我们提出
三个目标。目的 1. 明确单核细胞 Dll4 表达和 exDll4 释放的调控机制
多环芳烃。目的2.确定exDll4-Notch1在肺EC中的生物学功能及其分子机制。目的
3. 表征抑制单核细胞 Dll4 对 PAH 进展的治疗效果。实现这些
目标将 1) 填补关于血管重塑和 EC 功能障碍机制的知识空白
单核细胞衍生的 exDll4 介导的 PAH 发病机制; 2)揭示Dll4裂解的调控;和 3)
通过靶向单核细胞 Dll4 发明了一种新的 PAH 治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinjiang Pang其他文献
Jinjiang Pang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinjiang Pang', 18)}}的其他基金
Signal transduction mechanisms that mediate normal and pathologic angiogenesis
介导正常和病理性血管生成的信号转导机制
- 批准号:
9886420 - 财政年份:2014
- 资助金额:
$ 43.68万 - 项目类别:
Signal transduction mechanisms that mediate normal and pathologic angiogenesis
介导正常和病理性血管生成的信号转导机制
- 批准号:
9031134 - 财政年份:2014
- 资助金额:
$ 43.68万 - 项目类别:
Signal transduction mechanisms that mediate normal and pathologic angiogenesis
介导正常和病理性血管生成的信号转导机制
- 批准号:
10318100 - 财政年份:2014
- 资助金额:
$ 43.68万 - 项目类别:
Signal transduction mechanisms that mediate normal and pathologic angiogenesis
介导正常和病理性血管生成的信号转导机制
- 批准号:
10534195 - 财政年份:2014
- 资助金额:
$ 43.68万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 43.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




