Decoding inner speech: An AI approach to transcribing thoughts via EEG & EMG

解码内心言语:一种通过脑电图转录思想的人工智能方法

基本信息

  • 批准号:
    10058047
  • 负责人:
  • 金额:
    $ 52.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-09-14
  • 项目状态:
    已结题

项目摘要

ABSTRACT Losing the capacity to communicate through language has a significant negative impact on a person’s autonomy, social interactions, occupation, mental health, and overall quality of life. Many people lose the capacity to speak and write but keep their thinking intact. Inner speech is internally and willfully generated, non-articulated verbal thoughts (e.g., reading in silence). Changes in the activation patterns of the brain’s language-related areas co-occur with inner speech and can be detected with electroencephalography (EEG). Furthermore, while inner speech doesn’t lead to any discernible voice sound or articulation, co-occurring low amplitude electrical discharges in the articulatory muscles can be detected with electromyography (EMG). The information about ongoing inner speech reflected in electrophysiological signals (EEG and EMG) can be used to transcribe inner speech into text or voice. Machine learning algorithms have been used for this purpose, however, the resulting systems have low accuracy and/or are constrained by very small vocabularies (~10 words). Furthermore, these systems need to be trained anew for each user, which significantly increases individual data-collection time. The development of ready-to-use/minimal-training (fine tuning) systems requires large training datasets that algorithms can use to learn high-level features capable of being transferred between individuals. Unfortunately, to date there are no available datasets that are large enough to train these systems. To tackle these issues, I have assembled a multidisciplinary team of collaborators from Google AI, Yale linguistics, and Yale Psychiatry to develop a state-of-the-art deep neural network to transcribe inner speech to text using EEG and EMG signals. This system will incorporate some of the latest advances in artificial intelligence and data processing developed by Google AI. It will be designed to transcribe phonemes, thus, in principle, will be able to transcribe any word. Furthermore, we will collect the largest (x120 times) multi-subject (n=150) electrophysiological (EEG+EMG) inner speech dataset to date (300 hrs. in total) to train the first ready- to-use/minimal-training inner speech transcriber system. The technology resulting from this study has the potential to radically improve the quality of life of thousands of patients by providing them with a fast method of communicating their verbal thoughts. Furthermore, by combining this system with one of the many text-to-speech AIs that are currently available, our system could potentially restore the patients’ capacity to produce conversational speech.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose A CORTES-BRIONES其他文献

Jose A CORTES-BRIONES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose A CORTES-BRIONES', 18)}}的其他基金

Multimodal magnetoencephalography and electroencephalography exploration of the acute effects of THC exposure on neural noise and information transmission within working memory networks
多模态脑磁图和脑电图探索 THC 暴露对工作记忆网络内神经噪声和信息传输的急性影响
  • 批准号:
    10453350
  • 财政年份:
    2022
  • 资助金额:
    $ 52.36万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了