Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
基本信息
- 批准号:10055661
- 负责人:
- 金额:$ 11.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgeAmericanArtificial IntelligenceAwardBiometryBlindnessCaringCharacteristicsClinicClinicalComputational TechniqueCorneaDataData SetDecision MakingDetectionDevelopmentDiagnosisDiseaseDisease ProgressionEngineeringEnsureEvaluationEyeEye diseasesFrequenciesGlaucomaImageImaging TechniquesIndividualLearningLengthMeasurementMeasuresMedicineMentorsModelingMonitorOphthalmologyOptic DiskOptical Coherence TomographyOpticsParticipantPatient CarePatientsPerformancePhasePopulationPrimary Open Angle GlaucomaProbabilityProgressive DiseaseRaceResearchResearch PersonnelRetinaScanningSeveritiesSeverity of illnessSouth KoreaStandardizationStructureStructure-Activity RelationshipSupervisionTechniquesTextureThickThinnessThree-Dimensional ImageThree-Dimensional ImagingTrainingTranslatingUnited StatesUniversitiesVisionVisual FieldsVisualizationWidthWorkbasecareer developmentclinical carecollegecomputer sciencedeep learningexperiencefield studyimaging modalityimprovedimproved outcomeindividual patientlarge datasetslegally blindmaculamultidisciplinarypredictive modelingpreservationresearch clinical testingretinal nerve fiber layersexskillsstandard measurethree dimensional structuretomographytool
项目摘要
Project Abstract / Summary
Primary open angle glaucoma (POAG) is a leading cause of blindness in the United States and worldwide. It is
estimated that over 2.2 million Americans suffer from POAG and that over 130,000 are legally blind from the
disease. As the population ages, the number of people with POAG in the United States will increase to over 3.3
million in 2020 and worldwide to an estimated 111.8 million by 2040. POAG is a progressive disease associated
with characteristic functional and structural changes that clinicians use to diagnose and monitor the disease.
Over the past several years, spectral domain optical coherent tomography (SDOCT) has become the standard
tool for measuring structure in POAG. This 3D imaging modality provides a wealth of information about retinal
structure and POAG-related retinal layers. This large amount of data is hard for clinicians to interpret and use
effectively to help guide treatment decisions. Instead, summary metrics such as average layer thicknesses are
used to reduce SDOCT images to a handful of values. While these metrics are useful, they can be difficult to
interpret and they throwaway important information regarding voxel intensity and texture, relationships across
retinal layers, and the overall 3D structure of the retina. Relying too heavily on these metrics limits our ability to
gain a deeper understanding structural contributions to POAG, the relationship between structure and visual
function, and how structural (and functional) changes progress in POAG. Recent advances in artificial
intelligence and deep learning, however, offer new data-driven tools and techniques to interpret 3D SDOCT
images and learn from the large SDOCT datasets being collected in clinics around the world. This proposal will
apply state-of-the-art deep learning techniques to 3D SDOCT data in order to (1) develop more accurate
POAG detection tools, (2) reveal structure-function relationships, and (3) predict structural and
functional progression in POAG.
This proposal also details a training plan to help the PI transition from a postdoctoral scholar to an independent
researcher. The mentored phase of this award will be supervised by the primary mentor, Dr. Linda Zangwill, and
a multidisciplinary mentoring team including Dr. Robert Weinreb (Ophthalmology), Dr. David Kriegman
(Computer Science and Engineering), and Dr. Armin Schwartzman (Biostatistics). Performing the proposed
research, formal coursework, and mentored career development will the provide the PI with highly sought-
after skills and experience to help ensure a successful transition into independence.
项目摘要/摘要
原发性开角型青光眼(POAG)是美国和世界范围内致盲的主要原因。是
据估计,超过220万美国人患有POAG,超过13万人因POAG而合法失明。
疾病随着人口老龄化,美国POAG的人数将增加到3.3人以上。
到2020年,全球预计将达到1.118亿。POAG是一种进行性疾病,
具有临床医生用于诊断和监测疾病的特征性功能和结构变化。
在过去的几年里,谱域光学相干层析成像(SDOCT)已成为标准
用于测量POAG结构的工具。这种3D成像模式提供了大量关于视网膜病变的信息。
结构和POAG相关视网膜层。临床医生很难解释和使用这些大量的数据
有效地帮助指导治疗决策。相反,诸如平均层厚度之类的汇总度量是
用于将SDOCT图像减少到少数值。虽然这些指标很有用,但它们可能很难
它们会解释并丢弃有关体素强度和纹理的重要信息,
视网膜层和视网膜的整体3D结构。过度依赖这些指标限制了我们的能力,
更深入地了解POAG的结构贡献,结构和视觉之间的关系,
功能,以及POAG的结构(和功能)变化进展。人工智能的最新进展
然而,智能和深度学习提供了新的数据驱动工具和技术来解释3D SDOCT
图像,并从世界各地的诊所收集的大型SDOCT数据集中学习。这项建议会
将最先进的深度学习技术应用于3D SDOCT数据,以便(1)开发更准确的
POAG检测工具,(2)揭示结构-功能关系,(3)预测结构和
POAG的功能进展。
该提案还详细介绍了一项培训计划,以帮助PI从博士后学者过渡到独立的研究人员。
研究员该奖项的指导阶段将由主要导师琳达赞格威尔博士监督,
包括Robert Weinreb博士(眼科)、大卫·克里格曼博士在内的多学科指导团队
(计算机科学与工程)和Armin Schwartzman博士(生物统计学)。执行所提出的
研究,正式的课程,和指导的职业发展将提供PI高度寻求-
后技能和经验,以帮助确保成功过渡到独立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Christopher其他文献
Mark Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Christopher', 18)}}的其他基金
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10799087 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10219269 - 财政年份:2020
- 资助金额:
$ 11.73万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 11.73万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 11.73万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 11.73万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 11.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 11.73万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 11.73万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 11.73万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 11.73万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 11.73万 - 项目类别:
Miscellaneous Programs