Synthetic hydrogels for biomanufacturing of iPSC-derived neural cells for precision medicine
用于精准医学 iPSC 衍生神经细胞生物制造的合成水凝胶
基本信息
- 批准号:10081193
- 负责人:
- 金额:$ 86.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBiochemicalBiological AssayBiomanufacturingBioreactorsCell AdhesionCell Differentiation processCell modelCellsChemicalsCoupledCultured CellsDataDevelopmentDiseaseDisease modelElasticityEnvironmentEnvironmental ExposureEnvironmental Risk FactorEtiologyFeasibility StudiesGenerationsGenetic TranscriptionGoalsGrowth FactorHumanHydration statusHydrogelsLuciferasesMajor Depressive DisorderMeasurementMechanicsMethodologyMethodsMicroelectrodesMitoticModelingMorphologyNeurodevelopmental DisorderNeuronsOutputPatientsPharmaceutical PreparationsPhasePhenotypePolystyrenesPrecision therapeuticsProtocols documentationQuality ControlReporterReproducibilitySamplingSurfaceSystemTechniquesTechnologyTherapeuticThickThinnessTimeTissuesToxinValidationWorkbasecellular imagingcommercializationcomparativecostdesignexperimental studyimprovedinduced pluripotent stem cellinnovationmechanical propertiesnanonerve stem cellnovelphase 1 studyphysical propertypolymerizationprecision medicinepublic health relevancerelating to nervous systemresponsescreeningself assemblystemtime usetissue culturetooltreatment strategy
项目摘要
Human neural cells manufactured using patient-derived induced pluripotent stem cells (iPSCs) hold great
promise for modeling neurodevelopmental disorders, discovering new precision therapies, and screening for
potential risks from environmental toxins1-4. There have been significant advances in the last decade in protocols
and commercial media systems developed for differentiation into specific neural cell types5-8. However, there
remain significant technical challenges to overcome in their generation, manufacturing and assay workflows.
iPSCs are typically differentiated on animal-derived substrates that introduce intrinsic variability and lack control
over mechanical stiffness and biochemical composition. This often results in low yields and high variability, which
may be more pronounced when generating cellular models of diseases. There is a critical need to develop
commercial tools that promote differentiation of iPSCs into mature neural cells in a controlled, efficient, and
reproducible fashion and that eliminate animal derived products. The resulting cells, associated cell-based
assays and cellular therapeutics will have a transformative impact on neural disease modeling, drug and
therapeutic discovery and toxin screening.
Our Phase I study identified chemically defined and robust synthetic hydrogels for efficient differentiation
of iPSC-derived neural progenitor cells (NPCs) into cortical neurons and subsequent maturation to post-mitotic,
functionally mature neurons. The highly innovative aspects of this work are that the substrates are employed as
thin hydrogel coatings using our proprietary surface-localized polymerization methods which provides several
technical and commercialization advantages. In order to bring these novel substrates to market we propose the
following specific aims for our Phase II proposal: Specific Aim 1 will further validate the work that demonstrated
our optimized synthetic thin hydrogel coatings support neural differentiation and maturation. Including further
functional characterization of cells cultured on the substrates by employing microelectrode array analysis and
differential transcriptional analysis to compare cells cultured on the substrate. We will characterize of the physical
and mechanical properties of the optimized thin hydrogels and develop methods for coating plates using
automated systems. Specific Aim 2 will apply the substrates in a Proof-of-Concept demonstration utilizing the
substrates to assess cortical neurons from Major Depressive Disorder patient-derived samples compared with
controls. Specific Aim 3 will expand the technology platform by optimizing coating techniques on microcarriers
suitable for bioreactor scaling, which is a critical step to demonstrate these substrates are applicable to
biomanufacturing applications. This work is significant, as there is a critical need for better tools to optimize yields
and reduce variability in the differentiation of iPSCs to defined neural subtypes, support their long-term culture,
reduce the time needed to reach functional maturity and eliminate animal-derived products in the workflow.
使用患者来源的诱导多能干细胞(iPSCs)制造的人类神经细胞具有很大的潜力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connie S Lebakken其他文献
Connie S Lebakken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Connie S Lebakken', 18)}}的其他基金
Neural organoid models of the immunological microenvironment of glioblastoma for drug discovery applications
用于药物发现应用的胶质母细胞瘤免疫微环境的神经类器官模型
- 批准号:
10761235 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Human Neural Organoid Modeling of Alzheimer's Disease Neuroinflammation for Drug Discovery
阿尔茨海默病神经炎症的人类神经类器官模型用于药物发现
- 批准号:
10758939 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Hydrogel-enabled self-assembled human brain organoids for neurotoxicity applications
用于神经毒性应用的水凝胶自组装人脑类器官
- 批准号:
10374175 - 财政年份:2019
- 资助金额:
$ 86.81万 - 项目类别:
Hydrogel-enabled self-assembled human brain organoids for neurotoxicity applications
用于神经毒性应用的水凝胶自组装人脑类器官
- 批准号:
10259033 - 财政年份:2019
- 资助金额:
$ 86.81万 - 项目类别:
Synthetic hydrogels for biomanufacturing of iPSC-derived neural cells for precision medicine
用于精准医学 iPSC 衍生神经细胞生物制造的合成水凝胶
- 批准号:
10237392 - 财政年份:2018
- 资助金额:
$ 86.81万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 86.81万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 86.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows