Enrichment of DNA/RNA Sequences based on Pre-equilibrium Hybridization Kinetics
基于预平衡杂交动力学的 DNA/RNA 序列富集
基本信息
- 批准号:10112940
- 负责人:
- 金额:$ 46.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcidsAlgorithmsArtsBase SequenceBehaviorBindingBioinformaticsBiologicalBloodBuffersChemistryClinicalComplexCopy Number PolymorphismCustomDNADNA SequenceDNA sequencingDataDiseaseEarly DiagnosisEquilibriumGene ExpressionHumanHuman GenomeHybridsInheritedKineticsKnowledgeMeasurementMeasuresMethodsModelingMolecularNucleic Acid HybridizationNucleic AcidsNucleotidesOligonucleotidesOrganismPathway interactionsProcessProtocols documentationRNARNA SequencesReagentResearchRunningSamplingSequence AnalysisSideSilent MutationSpecificitySpeedSurfaceSystemTechniquesTechnologyTemperatureThermodynamicsTimeVariantbasebiophysical analysisbiophysical modeldesigndisease diagnosisfallshuman DNAinstrumentintercellular communicationinterestkinetic modelmagnetic beadsmeltingmillilitermodels and simulationnext generation sequencingnovelpublic health relevancereference genomescale uptool
项目摘要
DESCRIPTION (provided by applicant):
The sequences and concentrations of nucleic acid molecules within a sample hold vast amounts of scientific as well as clinical information that can be used to understand pathways and inform treatment. However, our current tools for nucleic acid sequence analysis fall orders of magnitude short of analyzing all 1017 nucleotides of DNA within a typical 1 mL sample of human blood. Enrichment, i.e. the selective capture/retention of desired DNA loci or sequences, is crucial to effective and rapid next-generation sequencing (NGS) of DNA and RNA samples. Current enrichment techniques (predominantly multiplexed PCR, hybrid capture, and molecular inversion probes) all suffer from limited uniformity of capture and limited capture specificity. Th first limitation results in poor quantitation of sequences relative to one another (e.g. copy number variations), and the second limitation results downstream in wasted NGS reads. Due to the high multiplexing requirement of most enrichment applications, it is generally difficult to systematically optimize either rationally or empirically, due to the large number of potential interactions between probes and target sequences. The PI proposes to develop novel hybridization probes and systems to allow multiplexed capture and enrichment of DNA and RNA sequences. Unlike previous hybrid capture techniques, the PI's approach focuses on probes with custom designable kinetics of hybridization to different sequences, and seeks to utilize precise predictive understanding to design probes that produce desired sequence capture behavior at particular points in time. By using differential hybridization kinetics, the research team will be able to achieve complex pre-equilibrium enrichment distributions that cannot be achieved at equilibrium. The research team will use a uniquely knowledge-driven design process, based on biophysical models of nucleic acids, and use only minimal empirical optimization. To further enhance the predictability of new capture probe set design, the team will also use novel methods to quickly and more accurately measure nucleic acid thermodynamics and kinetics at native conditions.
描述(由申请人提供):
样本中核酸分子的序列和浓度包含大量的科学和临床信息,可用于了解途径和指导治疗。然而,我们目前用于核酸序列分析的工具无法分析典型的1毫升人类血液样本中的所有1017个核苷酸。对DNA和RNA样品进行有效和快速的下一代测序(NGS)至关重要,即选择性捕获/保留所需的DNA基因座或序列。目前的浓缩技术(主要是多重聚合酶链式反应、杂交捕获和分子反转探针)都存在捕获一致性和捕获特异性有限的问题。第一个限制导致序列相对于另一个的较差的量化(例如,拷贝数变化),而第二个限制导致下游的NGS读取浪费。由于大多数浓缩应用对多路复用的要求很高,由于探针和靶序列之间存在大量潜在的相互作用,因此通常很难合理地或凭经验地系统优化。PI建议开发新的杂交探针和系统,以实现对DNA和RNA序列的多路捕获和浓缩。与以前的杂交捕获技术不同,PI的方法专注于具有定制可设计的不同序列杂交动力学的探针,并寻求利用精确的预测理解来设计在特定时间点产生所需序列捕获行为的探针。通过使用差异杂交动力学,研究小组将能够实现在平衡时无法实现的复杂的平衡前浓缩分布。研究团队将使用一种独特的知识驱动的设计过程,基于核酸的生物物理模型,并仅使用最小的经验优化。为了进一步提高新捕获探针组设计的可预测性,该团队还将使用新的方法来快速、更准确地测量自然条件下的核酸热力学和动力学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modular probes for enriching and detecting complex nucleic acid sequences.
用于富集和检测复合核酸序列的模块化探针。
- DOI:10.1038/nchem.2820
- 发表时间:2017-12
- 期刊:
- 影响因子:21.8
- 作者:Wang JS;Yan YH;Zhang DY
- 通讯作者:Zhang DY
Metastable hybridization-based DNA information storage to allow rapid and permanent erasure.
- DOI:10.1038/s41467-020-18842-6
- 发表时间:2020-10-06
- 期刊:
- 影响因子:16.6
- 作者:Kim J;Bae JH;Baym M;Zhang DY
- 通讯作者:Zhang DY
Nucleic Acid Quantitation with Log-Linear Response Hybridization Probe Sets.
- DOI:10.1021/acssensors.0c00052
- 发表时间:2020-06-26
- 期刊:
- 影响因子:8.9
- 作者:Wu LR;Fang JZ;Khodakov D;Zhang DY
- 通讯作者:Zhang DY
Predicting stability of DNA bulge at mononucleotide microsatellite.
- DOI:10.1093/nar/gkab616
- 发表时间:2021-08-20
- 期刊:
- 影响因子:14.9
- 作者:Bae JH;Zhang DY
- 通讯作者:Zhang DY
Simultaneous and stoichiometric purification of hundreds of oligonucleotides.
数百个寡核苷酸的同时和化学计量纯化。
- DOI:10.1038/s41467-018-04870-w
- 发表时间:2018-06-25
- 期刊:
- 影响因子:16.6
- 作者:Pinto A;Chen SX;Zhang DY
- 通讯作者:Zhang DY
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omid Veiseh其他文献
Omid Veiseh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omid Veiseh', 18)}}的其他基金
Synthesis and High-Throughput In Vivo Characterization of Alginate Encapsulation Materials for Long-Term Islet
用于长期胰岛的海藻酸盐封装材料的合成和高通量体内表征
- 批准号:
9982065 - 财政年份:2018
- 资助金额:
$ 46.78万 - 项目类别:
Supplement to :Synthesis and High-Throughput In Vivo Characterization of Alginate Encapsulation Materials for Long-Term Islet….
补充:用于长期胰岛的藻酸盐封装材料的合成和高通量体内表征…。
- 批准号:
9925030 - 财政年份:2018
- 资助金额:
$ 46.78万 - 项目类别:
Synthesis and High-Throughput In Vivo Characterization of Alginate Encapsulation Materials for Long-Term Islet
用于长期胰岛的海藻酸盐封装材料的合成和高通量体内表征
- 批准号:
10161776 - 财政年份:2018
- 资助金额:
$ 46.78万 - 项目类别:
Synthesis and High-Throughput In Vivo Characterization of Alginate Encapsulation Materials for Long-Term Islet
用于长期胰岛的海藻酸盐封装材料的合成和高通量体内表征
- 批准号:
10417320 - 财政年份:2018
- 资助金额:
$ 46.78万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.78万 - 项目类别:
Research Grant