MS Diagnostic Bacterial Identification Library
MS 诊断细菌鉴定库
基本信息
- 批准号:10116273
- 负责人:
- 金额:$ 46.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntibioticsAntimicrobial ResistanceBacteriaBacterial InfectionsBacterial ProteinsBar CodesBiologicalBiological AssayBloodCardiolipinsCell Culture TechniquesCellsCessation of lifeChemicalsClinicalClinical MicrobiologyColistinCommunicable DiseasesComplexComputer softwareDataDetectionDevelopmentDiagnosticEscherichia coliEventFaceFailureFecesFinancial HardshipFundingGeneral HospitalsGlycerophospholipidsGlycolipidsGrantGrowthHealth care facilityHealth systemHealthcareHourIndividualInfectionIntensive CareIonsLaboratoriesLaboratory ResearchLength of StayLibrariesLipid ALipidsLiquid substanceMALDI-TOF Mass SpectrometryMachine LearningMass Spectrum AnalysisMembraneMembrane LipidsMethodologyMethodsMicrobeMinorModelingMorbidity - disease rateMycosesOrganismPatientsPatternPeer ReviewPhenotypeProcessProteinsProtocols documentationPublicationsRiversSamplingSepsisSolidSpecimenSpeedSphingolipidsSterolsStructureTechnologyTimeUrinary tract infectionUrineWorkaccurate diagnosisantimicrobialbasebiodefensechemical fingerprintingchemotherapyclinically relevantcombatcostdesigndetection limitdiagnostic platformexperimental studyfeature extractionfungusglobal healthimprovedinnovationlipoteichoic acidmicrobialmortalitynew technologynovelnovel diagnosticsnovel therapeuticspathogenpathogenic funguspoint of carerapid diagnosisresistant strainsimulationsoftware developmentstool sampletandem mass spectrometrytoolwardwound
项目摘要
PROJECT SUMMARY
Infectious diseases have a substantial global health impact. Clinicians need rapid and accurate diagnoses of
infections to direct patient treatment and improve antibiotic stewardship, but current methodologies face severe
limitations in this regard. In the first funding cycle of our MPI grant “GM111066 - MS diagnostic bacterial
identification library,” we produced a novel diagnostic platform in which microbial membrane glycolipids
analyzed by mass spectrometry represent chemical “fingerprints” that were then used to differentiate Gram-
negative and –positive and fungal isolates after mono- or poly-microbial growth in standard laboratory medias
or complex biological (urine, blood bottles, and would effluent). In the second funding cycle, we aim to improve
the diagnostic as discussed below.
At the start this project, it had not been previously shown that bacterial or fungal membrane lipids could
provide a unique chemical signature or barcode that could be used for reliable pathogen identification. The fact
that these lipids (Gram-: LPS/lipid A, Gram+: Lipoteichoic acid/cardiolipin, Fungi: glycerophospholipids,
sphingolipids, and sterols) are present in high abundance (~106 copies per cell) makes them easily extractable
with a single rapid LPS-based protocol (less than 60 minutes from sample to MS identification). Importantly, for
clinical use, we successfully used our platform to solve these four major unmet needs from the protein-based
phenotyping approach: 1) removed the need for growth prior to MS analysis, 2) identification of bacterial and
fungal isolates with a single extraction protocol, 3) identification directly from complex biological fluids,
including urine, BAL fluid, wound effluent, and blood bottles, and 4) antimicrobial resistant strains could be
distinguished from the related susceptible strain. Finally, based on our thirteen peer-reviewed publications from
the first funding period and extensive preliminary data, we believe we have proven our highly innovative
original hypothesis and even advanced it past the original aims by using a design of experiment (DOE) process
to allow identification in under an hour direct from specimen.
In the second funding cycle, we propose to further innovate by i) using DOE to improve limit of detection
(LOD) from 106 to 103 which is the threshold for urinary tract infections; ii) extend the assay to direct analysis
of urine and stool samples without culture; iii) develop machine learning approaches to improve identification
of individual bacteria from polymicrobial infections; iv) expand detection of antimicrobial resistance beyond
colistin; v) develop a method for identification and structure analysis of lipids isolated from 100-1000 cells; and
vi) vastly expand our ability to identify pathogenic fungi, which are a growing healthcare issue, and Gram-
positive organisms.
项目摘要
传染病对全球健康产生重大影响。临床医生需要快速准确的诊断,
感染,以指导患者治疗和改善抗生素管理,但目前的方法面临严重的
在这方面的限制。在我们的MPI赠款“GM 111066- MS诊断细菌”的第一个资助周期中,
鉴定库,”我们产生了一种新的诊断平台,其中微生物膜糖脂
质谱分析代表化学“指纹”,然后用来区分革兰氏,
在标准实验室培养基中单一或多种微生物生长后,阴性和阳性以及真菌分离株
或复杂的生物(尿液、血瓶和废液)。在第二个融资周期,我们的目标是改善
诊断如下所述。
在这个项目开始时,以前没有显示细菌或真菌的膜脂可以
提供可用于可靠病原体鉴定的独特化学特征或条形码。的事实
这些脂质(革兰氏-:LPS/脂质A,革兰氏+:脂磷壁酸/心磷脂,真菌:甘油磷脂,
鞘脂和甾醇)以高丰度(每个细胞约106个拷贝)存在,使其易于提取
使用基于LPS的单一快速方案(从样品到MS鉴定不到60分钟)。重要的是对
在临床应用中,我们成功地利用我们的平台解决了基于蛋白质的
表型分型方法:1)在MS分析之前不需要生长,2)鉴定细菌和
用单一提取方案进行真菌分离,3)直接从复杂生物流体中鉴定,
包括尿液、BAL液、伤口流出物和血瓶,以及4)抗菌药物耐药菌株可能
与相关的敏感菌株相区别。最后,根据我们的13篇同行评议的出版物,
第一个融资期和广泛的初步数据,我们相信我们已经证明了我们的高度创新
原始假设,甚至通过使用实验设计(DOE)过程将其推进到原始目标之外
一小时内就能从标本上鉴定出身份
在第二个资助周期,我们建议进一步创新,i)使用DOE来提高检测限
(LOD)从106到103,这是尿路感染的阈值; ii)将测定扩展到直接分析
未经培养的尿液和粪便样本; iii)开发机器学习方法以改善识别
iv)扩大对抗菌素耐药性的检测范围,
v)开发用于鉴定和结构分析从100-1000个细胞分离的脂质的方法;和
vi)极大地扩展我们识别致病真菌的能力,这是一个日益严重的医疗保健问题,
阳性微生物
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert K Ernst其他文献
Robert K Ernst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert K Ernst', 18)}}的其他基金
Microbial adaptation of Pseudomonas lipid A structure in CF airway disease progress
假单胞菌脂质 A 结构在 CF 气道疾病进展中的微生物适应
- 批准号:
10722599 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Mid-Atlantic Microbial Pathogenesis Meeting 2022
2022 年大西洋中部微生物发病机制会议
- 批准号:
10504721 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Protection Against Gram-Negative Sepsis Conferred by Lipid A-Based Structural Variants
基于脂质 A 的结构变体可预防革兰氏阴性脓毒症
- 批准号:
9753900 - 财政年份:2016
- 资助金额:
$ 46.35万 - 项目类别:
Development of a Rationally Attenuated Live Vaccine for Francisella tularensis
土拉弗朗西斯菌合理减毒活疫苗的研制
- 批准号:
8650788 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
Development of a Rationally Attenuated Live Vaccine for Francisella tularensis
土拉弗朗西斯菌合理减毒活疫苗的研制
- 批准号:
8511015 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
Immunotherapeutic Potential of Modified Lipooligosaccharides and Lipid A's
修饰脂寡糖和脂质 A 的免疫治疗潜力
- 批准号:
8675799 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
Immunotherapeutic Potential of Modified Lipooligosaccharides and Lipid A's
修饰脂寡糖和脂质 A 的免疫治疗潜力
- 批准号:
8584054 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists