Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
基本信息
- 批准号:10078616
- 负责人:
- 金额:$ 65.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:A kinase anchoring proteinAcrodysostosisAllosteric RegulationAmino Acid MotifsAtrial myxoma with lentiginesBiologyCalcineurinCatalysisCatalytic DomainCellsChildhood Liver CancerCiliaComplexCryo-electron tomographyCryoelectron MicroscopyCrystallizationCrystallographyCyclic AMP-Dependent Protein KinasesDNADiseaseEndocrine System DiseasesFundingG-Protein-Coupled ReceptorsGoalsHandHoloenzymesImageLengthLiverMediatingMolecularMosaicismMutationNational Institute of General Medical SciencesPhosphorylationPhosphotransferasesPortraitsProtein KinaseProteinsRegulationResolutionSecond Messenger SystemsSignal TransductionSiteSpecificityStructureSystemTailTechniquesTissuesWorkcareerflexibilityinsightmacromolecular assemblymutantprototypetool
项目摘要
ABSTRACT. My entire career, funded under the umbrella of NIGMS, has been guided by the principle that
structure will provide an understanding of function with the ultimate goal being to elucidate how protein phos-
phorylation regulates biology. My specific focus has been to solve structures of molecules that are associated
with PKA signaling beginning with the crystal structure of the catalytic (C) subunit, which was the first protein
kinase structure to be solved. While many functional insights have come from structures of the regulatory (R)
and C-subunits and from R:C heterodimers, PKA signaling in cells is mediated by full-length R2C2 holoenzy-
mes that are targeted, typically through A Kinase Anchoring Proteins (AKAPs), to discreet sites in the cell near
dedicated substrates. It is not possible to comprehensively understand PKA signaling in cells without having a
detailed portrait of the targeted holoenzymes, and this includes not only the R:C domains which reveal so
much about symmetry, catalysis and allostery but also the dynamic linkers and domains that evade classic
crystallography. So much important biology is embedded in these linkers that drive the assembly, targeting and
regulation of all kinases. Our recent work in solving structures and elucidating features of the full-length holo-
enzymes shows how higher levels of complexity and specificity are achieved. It also revealed the remarkable
structural and functional non-redundancy of the four PKA holoenzymes, which is so essential for achieving
specificity. The major challenge now is to understand how flexible linkers drive the assembly and regulation of
each holoenzyme. To meet this challenge we are building cryo electron microscopy (cryoEM) and eventually
cryo electron tomography (cryoET) into our portfolio of techniques that we need as well as high-resolution
mosaic imaging (HRMI) in tissues. With these tools in hand we expect to create a dynamic portrait of the RIIb
and RIa holoenzymes as they toggle between their active and inactive states. To simultaneously enhance our
understanding of disease we will focus on three diseases that are caused directly by mutant PKA subunits. FL-
HCC is a rare childhood liver cancer that is driven by the fusion of the J domain of DNA-JB1 to the N-terminus
of the PKA Ca subunit. Carney Complex Disease (CNC) and Acrodysostosis (ACRDYS) are endocrine dis-
orders caused by mutations in RIa. We believe that holoenzymes formed with these mutants will drive our
understanding of the wt proteins. In parallel we will do an HRMI profile of the liver and compare normal liver to
tissues where FL-HCC is expressed. The ACRDYS and CNC mutants in RIa highlight the allosteric network
that controls activation. For targeted PKA we will focus on two systems: the RIIb holoenzyme and calcineurin
bound to AKAP79 and RIa bound to the newly discovered AKAP motif in the C-terminal tail of the cilia-specific
GPCR, GPR161. With our exceptional team of collaborators we are poised to make rapid progress. Our long-
term goal is to establish PKA as the prototypical kinase for demonstrating how polyvalent macromolecular
signaling complexes are assembled and regulated and become dysfunctional as a consequence of disease.
摘要。我的整个职业生涯,在NIGMS的保护伞下资助,一直遵循以下原则,
结构将提供功能的理解,最终目标是阐明蛋白质磷酸化是如何进行的。
磷酸化调节生物学。我特别关注的是解决分子的结构
PKA信号始于催化(C)亚基的晶体结构,这是第一个蛋白质
待解的激酶结构。虽然许多功能性的见解来自于监管(R)的结构,
和C亚基以及R:C异二聚体,细胞中PKA信号传导由全长R2 C2全酶介导。
通常通过A激酶介导蛋白(AKAP)靶向细胞中的离散位点,
专用基板。如果没有一个完整的细胞模型,就不可能全面了解细胞中PKA信号传导。
靶向全酶的详细画像,这不仅包括R:C结构域,
很多关于对称性,催化和变构,但也有动态链接器和域,逃避经典
结晶学如此重要的生物学嵌入在这些连接器中,这些连接器驱动组装,靶向和
调节所有激酶。我们最近在解决结构和阐明特征的全长全息,
酶显示了如何实现更高水平的复杂性和特异性。它还揭示了
四种PKA全酶的结构和功能非冗余,这对于实现
的特异性现在的主要挑战是了解柔性连接体如何驱动组装和调节
每一种全酶为了应对这一挑战,我们正在建立低温电子显微镜(cryoEM),并最终
冷冻电子断层扫描(cryoET)到我们的技术组合,我们需要以及高分辨率
镶嵌成像(HRMI)。有了这些工具,我们希望创建一个动态的RIIb画像
和RIa全酶,因为它们在活性和非活性状态之间切换。同时提高我们的
为了更好地了解疾病,我们将重点关注由突变PKA亚基直接引起的三种疾病。FL-
HCC是一种罕见的儿童肝癌,由DNA-JB 1的J结构域与N末端融合驱动。
PKA Ca亚基的表达。Carney复合体病(CNC)和肢端骨发育不全(ACRDYS)是内分泌疾病,
由RIa突变引起的顺序。我们相信,这些突变体形成的全酶将驱动我们的
对WT蛋白质的理解。与此同时,我们将对肝脏进行HRMI分析,并将正常肝脏与
表达FL-HCC的组织。RIa中的ACRDYS和CNC突变体突出了变构网络
控制着激活对于靶向PKA,我们将重点关注两个系统:RIIb全酶和钙调神经磷酸酶
结合AKAP 79和RIa结合新发现的AKAP基序在C-末端尾部的纤毛特异性
GPCR,GPR161。凭借我们出色的合作者团队,我们准备取得快速进展。我们长久以来-
长期目标是建立PKA作为原型激酶,以证明多价大分子如何
信号传导复合物被组装和调节,并由于疾病而变得功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN S. TAYLOR其他文献
SUSAN S. TAYLOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN S. TAYLOR', 18)}}的其他基金
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10540678 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Illuminating the Role of understudied PRKACB Splice Variants in PKA Signaling
阐明正在研究的 PRKACB 剪接变体在 PKA 信号传导中的作用
- 批准号:
9813753 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10388723 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
9893411 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10623507 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10317050 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10376936 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10624491 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10535033 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
Lessons Learned from PKA: Assembly of Dynamic Macromolecular Switches
PKA 的经验教训:动态大分子开关的组装
- 批准号:
10582437 - 财政年份:2019
- 资助金额:
$ 65.99万 - 项目类别:
相似海外基金
Evaluating novel mutant-selective PDE4D PROTACs for the treatment of Acrodysostosis Type 2
评估新型突变选择性 PDE4D PROTAC 治疗 2 型肢节性骨质疏松症
- 批准号:
MR/Y003640/1 - 财政年份:2024
- 资助金额:
$ 65.99万 - 项目类别:
Research Grant
Understanding Acrodysostosis type 1 and 2 through a pluripotent stem cell-disease model.
通过多能干细胞疾病模型了解 1 型和 2 型肢端骨质疏松症。
- 批准号:
MR/X002020/1 - 财政年份:2022
- 资助金额:
$ 65.99万 - 项目类别:
Research Grant