Engineered Stem Cells for Cardiac Repair
用于心脏修复的工程干细胞
基本信息
- 批准号:10078963
- 负责人:
- 金额:$ 66.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayATP phosphohydrolaseActinsAcute myocardial infarctionAdultAffectAftercareAnimalsBindingBiochemicalCRISPR/Cas technologyCanis familiarisCardiacCardiac MyocytesCardiotonic AgentsCell LineCell SurvivalCell TherapyCell TransplantationCellsCellular Metabolic ProcessChronicCicatrixContractsCost efficiencyCoupledDataDegradation PathwayDependovirusDepressed moodDevicesDrug Delivery SystemsEchocardiographyEngineeringEnzymesEquilibriumFamily suidaeFeedbackGap JunctionsGene TargetingGoalsHeartHeart TransplantationHeart failureHip region structureHumanHuman EngineeringImmunocompromised HostIn VitroInfarctionIschemiaLeftLeft Ventricular FunctionLongevityMacaca nemestrinaMagnetic Resonance ImagingMeasurementMediatingMitochondriaMitoticModelingModificationMusMuscleMuscle CellsMuscle ContractionMutationMyocardialMyocardial InfarctionMyocardial ReperfusionMyocardiumMyosin ATPaseNatureNucleotidesNude RatsOperative Surgical ProceduresPathway interactionsPerformancePhosphocreatinePhosphorylationPhosphotransferasesPhysiologicalPower strokeProductionProteinsPumpRattusRecoveryRelaxationReperfusion InjuryRespirationRestRibonucleotide ReductaseRodentRodent ModelStressStructureTertiary Protein StructureTestingTherapeuticTimeTissuesToxic effectTransgenic OrganismsTransplantationUbiquitinationVariantVentricularVentricular FunctionViral VectorWorkadeno-associated viral vectorbasecardiac repaircell replacement therapycoronary artery occlusiondesignenergy balanceengineered stem cellsexperimental studyexpression vectorgene therapygraft functionheart functionhuman embryonic stem cellhuman stem cellsimprovedimproved functioningimproved outcomein vivoinduced pluripotent stem cellmouse modelnonhuman primatenoveloverexpressionpreventprotein degradationrepair functionrepair strategyresponsesmall moleculestem cellstreatment strategyvector
项目摘要
ABSTRACT. This project is built around years of collaborative work between Drs. Murry and Regnier
studying human embryonic stem cell derived cardiomyocytes (hESC-CMs) as a potential cell replacement
strategy for cardiac repair following myocardial infarction (MI). Our group has shown that hESC-CMs and
human inducible pluripotent SC-CMs (hiPS-CMs) can be produced at a scale and purity that permit testing in
rodent models and the animal most likely to predict the human response: the non-human primate (NHP;
Macaca nemestrina). We have demonstrated the ability of these cells to engraft in rodent models, covering the
entire scar, and electrically integrate with host tissue to improve left ventricular performance.
This project is based on two fundamental discoveries: 1) 2-deoxy ATP (dATP) is a potent natural
nucleotide stimulant of cardiac contractility (via improved myosin binding to actin & faster detachment after the
power stroke), and 2) hiPSC-CMs that overexpress the rate-limiting enzyme for dATP synthesis, ribonucleotide
reductase (RNR), have both increased contractility and deliver dATP to the rest of the heart via gap junctions.
Thus we will test the hypothesis that engineering hiPSC-CMs to elevate RNR (RNR-hiPSC-CMs) will improve
outcomes in cell replacement therapy for MI (compared with control hiPSC-CMs), improving contractility of
both graft and native myocardium. There are several highly novel aspects to our approach. 1) It is the first
proposed use of cellular nucleotide manipulation to improve in vivo cardiac function. 2) The approach is not
limited to replacement of lost tissue (with hiPSC-CMs) with a better functioning graft, but may also substantially
benefit the post-MI depressed function of native myocardium. 3) The first use of engineered hiPSC-CMs to
deliver what is effectively a small molecule therapy (dATP), a natural compound that improves heart muscle
contraction. This effectively makes hiPSC-CMs a drug delivery device with cardiac specific delivery and
effects. Aim 1 will develop and test engineered mutations in RNR that increase it's stability and activity in
cardiomyocytes and their ability to titrate increasing levels of dATP produced in hiPSC-CMs. Aim 2 will use
AAV vectors for RNR variants, selected from Aim 1, to investigate their capacity to improve cardiac function in
a mouse model of myocardial infarct and heart failure. Aim 3 will produce engineered hiPS cell lines that will
act as dATP `donor cells' following differentiation, for transplantation into acute MI and more challenging
chronic MI athymic rat models to determine their capacity to improve function beyond transplantation of non-
engineered hiPSC-CMs. We will evaluate the persistence of these effects and determine the long-term
stability and viability of these cell lines. We expect significant contractile improvement of both the graft and
native myocardium with RNR-hiPSC-CMs vs. hiPSC-CMs and this effect will be modulated by the dATP
producing capacity of the transplanted cells. Results from these studies will elucidate the potential of this
combination cell- and small molecule therapy to ameliorate or even improve pump function in failing hearts.
抽象的。该项目是基于博士之间多年的合作而建立的。穆里和雷尼尔
研究人类胚胎干细胞衍生的心肌细胞(hESC-CM)作为潜在的细胞替代品
心肌梗死(MI)后心脏修复的策略。我们的小组已经证明 hESC-CM 和
人类诱导多能 SC-CM (hiPS-CM) 的生产规模和纯度可允许在
啮齿动物模型和最有可能预测人类反应的动物:非人类灵长类动物(NHP;
猕猴 (Macaca nemestrina)。我们已经证明了这些细胞移植到啮齿动物模型中的能力,涵盖了
整个疤痕,并与宿主组织电结合以改善左心室性能。
该项目基于两个基本发现:1) 2-脱氧 ATP (dATP) 是一种有效的天然
心肌收缩力的核苷酸刺激剂(通过改善肌球蛋白与肌动蛋白的结合以及在心肌收缩后更快的分离)
动力冲程),以及 2) hiPSC-CM 过度表达 dATP 合成的限速酶、核糖核苷酸
还原酶 (RNR) 既能增强收缩性,又能通过间隙连接将 dATP 输送到心脏的其他部分。
因此,我们将测试以下假设:通过工程设计 hiPSC-CM 来提高 RNR (RNR-hiPSC-CM) 将改善
MI 细胞替代疗法的结果(与对照 hiPSC-CM 相比),改善心肌收缩力
移植心肌和天然心肌。我们的方法有几个非常新颖的方面。 1)这是第一个
建议使用细胞核苷酸操作来改善体内心脏功能。 2)该方法不是
仅限于用功能更好的移植物替代丢失的组织(使用 hiPSC-CM),但也可能在很大程度上
有益于心肌梗死后低下的天然心肌功能。 3) 首次使用工程化 hiPSC-CM
提供有效的小分子疗法 (dATP),这是一种改善心肌的天然化合物
收缩。这有效地使 hiPSC-CM 成为具有心脏特异性递送和
影响。目标 1 将开发和测试 RNR 的工程突变,以提高其稳定性和活性
心肌细胞及其滴定 hiPSC-CM 中产生的 dATP 水平的能力。目标2将使用
从目标 1 中选择的 RNR 变体的 AAV 载体,以研究它们改善心脏功能的能力
心肌梗塞和心力衰竭的小鼠模型。目标 3 将产生工程 hiPS 细胞系,
分化后充当 dATP“供体细胞”,用于移植到急性 MI 中并更具挑战性
慢性心肌梗死无胸腺大鼠模型,以确定其改善非非胸腺移植以外的功能的能力
工程化 hiPSC-CM。我们将评估这些影响的持续性并确定长期影响
这些细胞系的稳定性和活力。我们预计移植物和移植物的收缩力都会显着改善
具有 RNR-hiPSC-CM 的天然心肌与 hiPSC-CM 的比较,这种效应将受到 dATP 的调节
移植细胞的生产能力。这些研究的结果将阐明这种技术的潜力
联合细胞和小分子疗法可改善甚至改善衰竭心脏的泵功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles E Murry其他文献
Regenerating the heart
再生心脏
- DOI:
10.1038/nbt1117 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:41.700
- 作者:
Michael A Laflamme;Charles E Murry - 通讯作者:
Charles E Murry
Charles E Murry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles E Murry', 18)}}的其他基金
Function, composition, and mechanism of RNA splicing factories in cardiomyopathy
RNA剪接工厂在心肌病中的功能、组成和机制
- 批准号:
10583011 - 财政年份:2022
- 资助金额:
$ 66.56万 - 项目类别:
Metabolic and Transcriptional Reprogramming of Cardiac Maturation
心脏成熟的代谢和转录重编程
- 批准号:
10202988 - 财政年份:2021
- 资助金额:
$ 66.56万 - 项目类别:
Metabolic and Transcriptional Reprogramming of Cardiac Maturation
心脏成熟的代谢和转录重编程
- 批准号:
10579257 - 财政年份:2021
- 资助金额:
$ 66.56万 - 项目类别:
Metabolic and Transcriptional Reprogramming of Cardiac Maturation
心脏成熟的代谢和转录重编程
- 批准号:
10378094 - 财政年份:2021
- 资助金额:
$ 66.56万 - 项目类别:
Project 4: UW-CNOF Biological Model Development and Data Generation
项目 4:UW-CNOF 生物模型开发和数据生成
- 批准号:
9021415 - 财政年份:2015
- 资助金额:
$ 66.56万 - 项目类别:














{{item.name}}会员




