Quasi-ideal photon counting x-ray CT with multi-energy inter-pixel coincidence counter (MEICC)

具有多能量像素间符合计数器 (MEICC) 的准理想光子计数 X 射线 CT

基本信息

  • 批准号:
    10117252
  • 负责人:
  • 金额:
    $ 19.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary We propose a technical solution that enables nearly ideal photon counting detectors (PCDs) for x-ray computed tomography (CT), which will bring most of clinical dreams surrounding PCD-CT into reality. We call the solution multi-energy inter-pixel coincidence counter (MEICC) and it is feasible to implement the design and algorithm of MEICC using today’s electronics technology. We plan to provide a proof of concept that will “move the needle” by working on the detail of MEICC, optimizing the design and studying the performance of MEICC using Monte Carlo (MC) simulations. PCD-CT is expected to be the next generation of x-ray CT. It has great potentials such as improve the current CT images but also to enable new clinical applications, such as higher spatial resolution, better soft tissue contrast, stronger contrast agent enhancement, radiation dose reduction, quantitative CT imaging and biomarkers, accurate soft tissue material characterization, K-edge imaging, and simultaneous multi-contrast agent imaging. Studies showed that latest PCDs were sufficiently fast for clinical x-ray CT and several groups developed prototype whole-body PCD-CT systems and installed them for a beta test in 2014–2018. Studies have shown great potential of PCD-CT. But, the performance of the prototype PCD-CT did not meet high expectations. In fact, the performance was sometimes comparable to that of dual-energy CT because of a phenomenon called “charge sharing” between PCD pixels. It increases noise variance by a factor of 4, degrades the spatial resolution, degrades the energy response, and weakens the spectral signals. Overall, it has a significantly negative impact on the performance of PCD-CT. Charge sharing is inherent to the detection physics and the probability of charge sharing is ~70%. Thus, it is impossible to avoid and is a very critical issue that needs to be addressed. MEICC will address both noise and bias added by charge sharing. MEICC uses energy-dependent coincidence counters, keeps the book of charge sharing events during the data acquisition, and corrects them using the exact number of the occurrences after the acquisition is completed. MEICC does not interfere with the primary counting process; thus, PCDs with MEICC will remain as fast as those without MEICC. MEICC can be implemented using today’s electronics technology because its inter-pixel coincidence counters are simple and digital. We hypothesize that MEICC can eliminate the effect of charge sharing, decrease noise to the minimal level, enhance signals, improve the energy response, and over all, enable nearly ideal x-ray PCD-CT. We plan to test the hypothesis by accomplishing the following 3 specific aims: (SA1) Develop MEICC designs and algorithms; (SA2) develop MC simulation programs; (SA3) assess the task-specific performance of MEICC and other completing technologies using Cramér–Rao lower bound as the primary figure of merit.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katsuyuki Taguchi其他文献

Katsuyuki Taguchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katsuyuki Taguchi', 18)}}的其他基金

Assessing brain perfusion using IPEN during intra-arterial stroke intervention
动脉内卒中干预期间使用 IPEN 评估脑灌注
  • 批准号:
    10417557
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
Assessing brain perfusion using IPEN during intra-arterial stroke intervention
动脉内卒中干预期间使用 IPEN 评估脑灌注
  • 批准号:
    10580843
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
Time Resolved Cardiac Computed Tomography with Patient Dose Reduction
时间分辨心脏计算机断层扫描可减少患者剂量
  • 批准号:
    7837284
  • 财政年份:
    2009
  • 资助金额:
    $ 19.73万
  • 项目类别:
Time Resolved Cardiac Computed Tomography with Patient Dose Reduction
时间分辨心脏计算机断层扫描可减少患者剂量
  • 批准号:
    7529997
  • 财政年份:
    2008
  • 资助金额:
    $ 19.73万
  • 项目类别:
Time Resolved Cardiac Computed Tomography with Patient Dose Reduction
时间分辨心脏计算机断层扫描可减少患者剂量
  • 批准号:
    7659626
  • 财政年份:
    2008
  • 资助金额:
    $ 19.73万
  • 项目类别:
Time Resolved Cardiac Computed Tomography with Patient Dose Reduction
时间分辨心脏计算机断层扫描可减少患者剂量
  • 批准号:
    7864347
  • 财政年份:
    2008
  • 资助金额:
    $ 19.73万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了