Developing an Artificial Intelligence Chatbot to Promote HIV Testing

开发人工智能聊天机器人以促进艾滋病毒检测

基本信息

  • 批准号:
    10082768
  • 负责人:
  • 金额:
    $ 24.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-16 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Title Developing an Artificial Intelligence Chatbot to Promote HIV Testing Abstract (30 Lines) HIV testing jumpstarts the HIV prevention and treatment care continuum. HIV testing levels in men who have sex with men (MSM) and in diverse settings like Malaysia are especially low. MSM increasingly contribute to heightened HIV transmission in the presence of high levels of stigma and discrimination. For high risk MSM, new guidelines recommend frequent HIV testing, ranging from every 3 to 6 months. Yet, HIV testing in MSM often occurs less frequently due to individual (e.g., heightened concerns about risk disclosure), clinic (e.g., confidentiality breaches, and discrimination from healthcare providers) and policy (criminalization of same-sex sexual behaviors) barriers. HIV prevalence in MSM has soared to 21.6% in Malaysia, exceeding 40.9% in Kuala Lumpur. While surveillance surveys of MSM in Malaysia who meet criteria for PrEP suggest that lifetime HIV testing is 70.3%, past-year testing is 40.9% and only 9.5% were tested more than once-yearly despite extraordinary levels of self-reported risk. Once tested, however, MSM with HIV in Malaysia are likely to be treated with ART and achieve viral suppression, making HIV testing a central focus for HIV prevention and treatment. Innovative strategies that motivate and provide guidance for testing among MSM in these settings are therefore urgently needed. Intervening using Information-Motivation-Behavioral Skills (IBM) model of behavioral change is ideally suited to overcome barriers to recommended HIV testing in MSM. Moreover, in settings like Malaysia where the HIV epidemic has transitioned from primarily concentrated in PWID to a volatile epidemic in MSM, theory-guided behavioral change strategies that inform, motivate and provide pragmatic skills to more fully engage in recommended HIV testing are poised to accelerate the HIV prevention and care continuum. Given the many individual, clinic and policy barriers to HIV testing, mobile health (mHealth) interventions that reduce “in person” contact and offer a menu of behavioral skills is ideally suited to increase access to MSM in highly stigmatized settings and promote recommended HIV testing. Recent studies in the U.S., China, South Africa, and Peru show that mHealth interventions using smartphones and apps have the potential to increase HIV testing while maintaining MSM’s confidentiality and providing real-time information, motivation and behavioral skills to overcome barriers. Such mHealth interventions are feasible and acceptable among MSM, including in Malaysia where most MSM find sexual partners using smartphone apps with similar interfaces and functionalities to the proposed intervention. Current mHealth strategies, however, are limited by their lack of automation and need for high-intensity and sustained human inputs, which restricts their scale-up. Artificial intelligence using machine learning (AI/ML) may overcome such limitations, but have yet to be applied to mHealth-based HIV testing algorithms. We therefore aim to develop and pilot test to assess acceptability and feasibility of an AI/ML-Chatbot for HIV testing relative to treatment as usual (control). Findings from this exploratory pilot study will inform a future prospective Type 1 Hybrid implementation science trial.
标题 开发人工智能聊天机器人以促进艾滋病毒检测 摘要(30行) 艾滋病毒检测启动了艾滋病毒预防和治疗护理的连续性。男性艾滋病毒检测水平, 与男性发生性关系(MSM),并在马来西亚等不同的环境中特别低。MSM越来越多的贡献 在存在高度污名化和歧视的情况下,艾滋病毒传播加剧。对于高风险的MSM, 新的指南建议经常进行艾滋病毒检测,每3到6个月一次。然而,男男性行为者的艾滋病毒检测 通常由于个体原因而不太频繁地发生(例如,对风险披露的高度关注),诊所(例如, 违反保密规定,以及医疗保健提供者的歧视)和政策(同性恋的刑事化 性行为)障碍。在马来西亚,男男性接触者的艾滋病毒感染率飙升至21.6%,超过了吉隆坡的40.9%。 吉隆坡虽然对马来西亚符合PrEP标准的MSM进行的监测调查表明, 测试是70.3%,去年测试是40.9%,只有9.5%的测试超过一年,尽管非常 自我报告的风险水平。然而,一旦测试,马来西亚的艾滋病毒感染者可能会接受抗逆转录病毒治疗 并实现病毒抑制,使艾滋病毒检测成为艾滋病毒预防和治疗的中心焦点。 创新的战略,激励和提供指导,在这些设置男男性行为者之间的测试是 因此迫切需要。信息-动机-行为技能(IBM)模型 行为改变非常适合于克服MSM中推荐的HIV检测的障碍。而且在 像马来西亚这样的地方,艾滋病毒的流行已经从主要集中在PWID转变为 在男男性接触者中的不稳定流行病,理论指导的行为改变策略,告知,激励和提供 更充分地参与建议的艾滋病毒检测的实用技能有望加速艾滋病毒预防 关怀的连续性。鉴于艾滋病毒检测面临许多个人、诊所和政策障碍,移动的医疗(mHealth) 减少“面对面”接触并提供行为技能菜单的干预措施非常适合增加 在高度污名化的环境中接触男男性行为者,并促进推荐的艾滋病毒检测。最近在美国的研究, 中国、南非和秘鲁表明,使用智能手机和应用程序的移动医疗干预具有潜力 增加艾滋病毒检测,同时保持男男性接触者的保密性,并提供实时信息, 克服障碍的动机和行为技能。这种移动健康干预措施是可行的,也是可以接受的。 在MSM中,包括在马来西亚,大多数MSM使用智能手机应用程序找到性伴侣, 建议的干预措施的接口和功能。然而,目前的移动健康战略受到以下因素的限制: 它们缺乏自动化,需要高强度和持续的人力投入,这限制了它们的规模扩大。 使用机器学习的人工智能(AI/ML)可能会克服这样的限制,但尚未得到应用 到基于移动健康的艾滋病毒检测算法。因此,我们的目标是发展和试点测试,以评估可接受性, AI/ML聊天机器人相对于常规治疗(对照)进行HIV检测的可行性。时发现的问题 探索性试点研究将为未来的前瞻性1型混合实施科学试验提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Allen Wickersham其他文献

Jeffrey Allen Wickersham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Allen Wickersham', 18)}}的其他基金

Strengthening the HIV care continuum for transgender women living with HIV in Malaysia
加强马来西亚感染艾滋病毒的跨性别女性的艾滋病毒护理连续性
  • 批准号:
    10650426
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Gamification to enhance engagement in HIV prevention and co-morbid conditions in young men who have sex with men
游戏化可提高男男性行为年轻男性对艾滋病毒预防和共病的参与度
  • 批准号:
    10620338
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Strengthening the HIV care continuum for transgender women living with HIV in Malaysia
加强马来西亚感染艾滋病毒的跨性别女性的艾滋病毒护理连续性
  • 批准号:
    10484525
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Gamification to enhance engagement in HIV prevention and co-morbid conditions in young men who have sex with men
游戏化可提高男男性行为年轻男性对艾滋病毒预防和共病的参与度
  • 批准号:
    10484651
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Developing an Artificial Intelligence Chatbot to Promote HIV Testing
开发人工智能聊天机器人以促进艾滋病毒检测
  • 批准号:
    10194372
  • 财政年份:
    2020
  • 资助金额:
    $ 24.82万
  • 项目类别:
Training in Drug Abuse & HIV Prevention for Female & Transgender Sex Workers
药物滥用培训
  • 批准号:
    8790248
  • 财政年份:
    2014
  • 资助金额:
    $ 24.82万
  • 项目类别:
Training in Drug Abuse & HIV Prevention for Female & Transgender Sex Workers
药物滥用培训
  • 批准号:
    8882385
  • 财政年份:
    2014
  • 资助金额:
    $ 24.82万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 24.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了