Topic 377: Symptom Management and Intervention Roadmaps (STaIRS) (Moonshot)
主题 377:症状管理和干预路线图 (STaIRS)(登月)
基本信息
- 批准号:10085605
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2022-01-14
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAlgorithmsAssessment toolCaringClientClinicalClinical DataConstipationEnsureEvaluationFatigueFatigue Assessment and ManagementGuidelinesHospitalizationInterventionLogicModelingMonitorMorbidity - disease rateNursing SocietiesOncologyOncology NursePatientsPhaseProliferatingSymptomsSystemTechnologyTelephoneTestingTranslatingTriagecancer careclinical decision supportcommercializationdata integrationdesignefficacy testingevidence basefield studyimprovedinteroperabilityreduce symptomssymptom managementsymptom self managementtreatment adherenceusability
项目摘要
Numerous adverse symptoms are under-detected in cancer care resulting1-3 in missed opportunities for
intervention; leading to poor treatment adherence, avoidable hospitalizations, and worse morbidity and
survival. The IOM proposed shaking up the current symptom paradigm from reactive to proactive,
personalized, technology-enabled models of symptom care as a solution to this clinical quality crisis. Such
proactive care models reduce symptom burden, emergency department use, and improve survival. While
commercially-available symptom monitoring and clinical alerting applications proliferate, they lack
personalized, computable algorithms for tailored, evidence-based clinical symptom management. The
Carevive Care Planning System (CPS) is an exception, having commercially deployed symptom monitoring
and assessment tools, clinician-facing content, and computable algorithms for patient self-management of
symptoms since 2014, via a proprietary rules engine. These assets, combined with ONS content and
Carevive’s extensive network of expert advisors and clients, will be leveraged in Phase I into the usercentered
design of computable algorithms for clinician assessment and management of fatigue and
constipation; integrating clinical data to facilitate personalized, evidence-based symptom care superior to
existing reactive and proactive symptom care approaches. Phase I wireframes will be the basis for symptom
expansion, extensive usability and field testing in Phase II, and ultimately efficacy testing and full-scale
commercialization.
在癌症护理中,许多不良症状未被发现,导致1 -3例患者错过了治疗的机会。
干预;导致治疗依从性差,可避免的住院治疗,以及更严重的发病率,
生存国际移民组织提议将目前的症状模式从被动转为主动,
个性化的,技术支持的症状护理模式,作为解决这一临床质量危机。等
积极主动的护理模式减少了症状负担、急诊室使用,并提高了生存率。而
商业上可用的症状监测和临床警报应用激增,但它们缺乏
个性化的、可计算的算法,用于量身定制的、基于证据的临床症状管理。的
Carevive护理计划系统(CPS)是一个例外,已商业部署症状监测
和评估工具,面向临床医生的内容,以及用于患者自我管理的可计算算法,
症状自2014年以来,通过专有的规则引擎。这些资产与ONS内容相结合,
Carevive广泛的专家顾问和客户网络,将在第一阶段利用到以用户为中心的
设计用于临床医生评估和管理疲劳的可计算算法,
便秘;整合临床数据,以促进个性化,循证症状护理优于上级
现有的反应性和主动性症状护理方法。第一阶段线框图将是症状的基础
第二阶段的扩展、广泛的可用性和现场测试,以及最终的功效测试和全面测试。
商业化
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrie Stricker其他文献
Carrie Stricker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant














{{item.name}}会员




