Integrating genome-scale data to reveal causal mechanisms in type 2 diabetes
整合基因组规模数据揭示 2 型糖尿病的因果机制
基本信息
- 批准号:10120279
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-05 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Type 2 diabetes has emerged as one of the leading threats to global health. The rapid rise in diabetes prevalence in both industrialized and emerging economies bears testament to the failures of prevention, and high rates of complication in those with diabetes highlight the inadequacies of current therapeutic approaches. Major gaps in our understanding of the mechanisms responsible for the development of diabetes represent obstacles to innovation with respect to novel preventative and therapeutic strategies. Human genetics provides an increasingly-powerful approach for addressing these deficiencies and providing mechanistic insights into disease that can result in health-related benefits. This proposal seeks to use information from human genetic discovery efforts that have, in recent years, identified over 100 regions of the genome which harbor DNA sequence variants influencing T2D-risk. There has been limited progress in turning these discoveries into mechanistic insights but several recent technological and analytical advances have transformed the situation, and it is these that we plan to exploit. Our first aim is to home i on the specific DNA sequence changes driving the risk-associations in these regions. The aggregation of very large genetic datasets, particularly when derived from a range of ethnic groups, makes it possible to define the subset of these variants likely to be driving the T2D-risk effect. We will take extensive genetic data sets collected as part of large international consortia and apply existing and novel approaches to derive the most precise localization of these T2D-risk variants yet obtained. Having identified these variants, the second aim is to understand the cellular processes they perturb. Recently, it has become possible to generate detailed functional maps of the genome from key diabetes- relevant human tissues, including the pancreatic islet. These maps define elements crucial for regulating cellular activity. We will use these maps to highlight the specific elements that contain T2D-causal variants, and initiate experimental studies to test the functional hypotheses that emerge. The third aim seeks to connect these T2D-associated functional elements to the specific genes, proteins, networks and pathways that mediate their effects. We will aggregate data from a variety of existing and novel public and proprietary sources, each of which provides complementary clues to the relevance of the regional genes to T2D development. Most medicines act on specific protein targets, and these efforts will result in novel protein targets that are directly implicated in human disease. An essential feature of this proposal is that it relies on extensive data sets that have already been collected, or, in some cases, are being generated with existing funding. The funding we request here will support the further integration of these data, and also enable its dissemination to the wider research community, most particularly via the AMP-T2DGENES consortium portal.
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study.
- DOI:10.1186/s13073-020-00806-6
- 发表时间:2020-12-01
- 期刊:
- 影响因子:12.3
- 作者:Gudmundsdottir V;Pedersen HK;Mazzoni G;Allin KH;Artati A;Beulens JW;Banasik K;Brorsson C;Cederberg H;Chabanova E;De Masi F;Elders PJ;Forgie I;Giordano GN;Grallert H;Gupta R;Haid M;Hansen T;Hansen TH;Hattersley AT;Heggie A;Hong MG;Jones AG;Koivula R;Kokkola T;Laakso M;Løngreen P;Mahajan A;Mari A;McDonald TJ;McEvoy D;Musholt PB;Pavo I;Prehn C;Ruetten H;Ridderstråle M;Rutters F;Sharma S;Slieker RC;Syed A;Tajes JF;Thomas CE;Thomsen HS;Vangipurapu J;Vestergaard H;Viñuela A;Wesolowska-Andersen A;Walker M;Adamski J;Schwenk JM;McCarthy MI;Pearson E;Dermitzakis E;Franks PW;Pedersen O;Brunak S
- 通讯作者:Brunak S
Analysis of overlapping genetic association in type 1 and type 2 diabetes.
- DOI:10.1007/s00125-021-05428-0
- 发表时间:2021-06
- 期刊:
- 影响因子:8.2
- 作者:Inshaw JRJ;Sidore C;Cucca F;Stefana MI;Crouch DJM;McCarthy MI;Mahajan A;Todd JA
- 通讯作者:Todd JA
Large-Scale Analyses Provide No Evidence for Gene-Gene Interactions Influencing Type 2 Diabetes Risk.
- DOI:10.2337/db20-0224
- 发表时间:2020-11
- 期刊:
- 影响因子:7.7
- 作者:Nag A;McCarthy MI;Mahajan A
- 通讯作者:Mahajan A
Genome-Wide Association Study of Peripheral Artery Disease.
- DOI:10.1161/circgen.119.002862
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:van Zuydam NR;Stiby A;Abdalla M;Austin E;Dahlström EH;McLachlan S;Vlachopoulou E;Ahlqvist E;Di Liao C;Sandholm N;Forsblom C;Mahajan A;Robertson NR;Rayner NW;Lindholm E;Sinisalo J;Perola M;Kallio M;Weiss E;Price J;Paterson A;Klein B;Salomaa V;Palmer CNA;Groop PH;Groop L;McCarthy MI;de Andrade M;Morris AP;Hopewell JC;Colhoun HM;Kullo IJ;GoLEAD Consortium, SUMMIT Consortium†
- 通讯作者:GoLEAD Consortium, SUMMIT Consortium†
Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals.
深度学习模型可预测胰岛的调节变异并细化 2 型糖尿病关联信号。
- DOI:10.7554/elife.51503
- 发表时间:2020
- 期刊:
- 影响因子:7.7
- 作者:Wesolowska-Andersen,Agata;ZhuoYu,Grace;Nylander,Vibe;Abaitua,Fernando;Thurner,Matthias;Torres,JasonM;Mahajan,Anubha;Gloyn,AnnaL;McCarthy,MarkI
- 通讯作者:McCarthy,MarkI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Louise Gloyn其他文献
Anna Louise Gloyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
激活SENP1-Sirt3轴改善线粒体健康对延缓衰老的作用与机制研究
- 批准号:92049113
- 批准年份:2020
- 资助金额:60.0 万元
- 项目类别:重大研究计划
小鼠Pold4介导的基因组稳定性在肺癌发生发展中的功能和机制研究
- 批准号:31900512
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
DNA损伤诱导的KIFC1磷酸化介导肿瘤耐药和复发的机制及策略研究
- 批准号:31970720
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
果蝇新基因dNKAP调控R-loop水平和基因组稳定性的分子机制及其在肿瘤发生中的功能研究
- 批准号:31970668
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
KLF14翻译后修饰及其在调控肿瘤细胞死亡中的作用研究
- 批准号:31970736
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
XPF蛋白的乙酰化修饰在DNA损伤修复中的功能与作用机制研究
- 批准号:31970664
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
有丝分裂检查点激酶对遗传稳定性的维持及其在癌症中的失调
- 批准号:31871361
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
动点微管相关蛋白SKAP磷酸化在食管癌发生发展中的分子调控机制及临床意义探究
- 批准号:31801142
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
miR-1193和DNA-PKcs协同致死脑胶质瘤细胞分子机制研究
- 批准号:31701179
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
泛素连接酶UBR5介导的FANCD2蛋白降解在范可尼贫血通路中的作用及机制
- 批准号:31701180
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10366570 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10549831 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Integrating genomic and clinical data to predict disease phenotypes using heterogeneous ensembles
使用异质集合整合基因组和临床数据来预测疾病表型
- 批准号:
10218766 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Integrating genomic and clinical data to predict disease phenotypes using heterogeneous ensembles
使用异质集合整合基因组和临床数据来预测疾病表型
- 批准号:
10589827 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Curation at scale: Integrating AI into community curation
大规模策展:将人工智能融入社区策展
- 批准号:
10621338 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Integrating genomic and clinical data to predict disease phenotypes using heterogeneous ensembles
使用异质集合整合基因组和临床数据来预测疾病表型
- 批准号:
10409755 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Curation at scale: Integrating AI into community curation
大规模策展:将人工智能融入社区策展
- 批准号:
10344771 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Integrating large scale genomics and functional studies to accelerate FSGS/NS discovery
整合大规模基因组学和功能研究以加速 FSGS/NS 发现
- 批准号:
10047547 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Integrating large scale genomics and functional studies to accelerate FSGS/NS discovery
整合大规模基因组学和功能研究以加速 FSGS/NS 发现
- 批准号:
10441350 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Integrating large scale genomics and functional studies to accelerate FSGS/NS discovery
整合大规模基因组学和功能研究以加速 FSGS/NS 发现
- 批准号:
10237944 - 财政年份:2020
- 资助金额:
-- - 项目类别: