CSHL Statistical Methods for Functional Genomics Course
CSHL 功能基因组学统计方法课程
基本信息
- 批准号:10088972
- 负责人:
- 金额:$ 9.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBehaviorBioconductorBioinformaticsBiologicalBiological AssayBiologyCellsCollaborationsCompetenceComplexCopy Number PolymorphismCourse ContentDataData AnalysesData SetDevelopmentEducational CurriculumEnsureEnvironmentExerciseExplosionFutureGenomicsGoalsImmunologyInheritedLaboratoriesLearningMalignant NeoplasmsMeasurementMeasuresMethodologyMethodsMethylationMolecular BiologyMolecular EvolutionMutationNeurosciencesOrganismParticipantPlantsPostdoctoral FellowProceduresResearchResearch PersonnelScientistSeriesStatistical ComputingStatistical Data InterpretationStatistical MethodsStudentsTalentsTechniquesTissuesTrainingUpdatebehavioral studybiological researchcareer networkingchromatin immunoprecipitationcosteducation researcheducational atmosphereforgingformal learningfunctional genomicsgenome-widegenomic datagraduate studenthigh throughput analysishigh throughput screeninghigh throughput technologyinstructorlaboratory curriculumlarge datasetsopen sourceprogramstrendwork-study
项目摘要
PROJECT SUMMARY/ABSTRACT
The proposed Cold Spring Harbor Laboratory (CSHL) summer course on Statistical Methods for
Functional Genomics is to be held annually in 2021-2024. The primary objective of the course is to build
competence in statistical methods for analyzing high‐throughput data in genomics and molecular biology.
Over the past two decades, high‐throughput assays have become pervasive in biological research due to
both rapid technological advances and decreases in overall cost. Many standard genomic measures such
as methylation, copy-number variation, and chromatin immunoprecipitation have been adapted in recent
years to high-throughput formats, and this has produced an explosion of genome-scale data from multiple
organisms. Investigators are now needed who have robust training in relevant statistical methods for
analyzing such data. CSHL proposes to meet the need for this specialized, interdisciplinary training by
continuing to offer an advanced two-week course each summer entitled Statistical Methods for Functional
Genomics. This course will provide intensive, hands-on training that will prepare participants to initiate
analyses of large and complex biological data sets. In addition, the curriculum will address issues
common to all high-throughput technologies, such as identifying and compensating for systematic errors,
statistical significance on a genome-wide scale, and incorporating bioinformatics data into statistical
procedures. In-class exercises and demonstrations will be done using the R environment for statistical
computing as well as Bioconductor, an open‐source project in R for use in bioinformatics research. The
course instructors will be established researchers who are fully active in and have made significant
contributions to the analysis of complex biological data sets, and the instructors will be supplemented by
a series of invited speakers who will present current research in their fields of expertise to illustrate
principles taught in the course. The course will train approximately 24 students per year, ranging from
advanced graduate students to senior investigators. Applications are anticipated from scientists with a
variety of scientific backgrounds, including molecular evolution, development, neuroscience, cancer,
plant biology, and immunology. As with other CSHL postgraduate courses, the overarching goal of
Statistical Methods for Functional Genomics is to provide residential training in advanced methodologies
that participants can apply immediately to their own research.
项目总结/摘要
拟议中的冷泉港实验室(CSHL)夏季统计方法课程,
Functional Genomics将于2021-2024年每年举办一次。本课程的主要目标是建立
在基因组学和分子生物学的高通量数据分析的统计方法的能力。
在过去的二十年中,高通量测定在生物学研究中已经变得普遍,这是由于
技术的快速进步和整体成本的下降。许多标准的基因组测量,
由于甲基化、拷贝数变异和染色质免疫沉淀在最近已经被采用,
多年来,高通量格式,这已经产生了爆炸性的基因组规模的数据,从多个
有机体现在需要在相关统计方法方面接受过严格培训的研究人员,
分析这些数据。CSHL建议通过以下方式满足对这种专业化、跨学科培训的需求:
继续提供为期两周的高级课程,每年夏天题为统计方法的功能
基因组学。本课程将提供强化的实践培训,使参与者能够开始
分析大型和复杂的生物数据集。此外,课程将解决问题
这是所有高通量技术所共有的,例如识别和补偿系统误差,
在全基因组范围内的统计意义,并将生物信息学数据纳入统计
程序.课堂练习和演示将使用R环境进行统计
Bioconductor是一个R语言的开源项目,用于生物信息学研究。的
课程讲师将建立研究人员谁是充分积极参与,并取得了显着
对复杂的生物数据集的分析作出贡献,教师将得到以下补充:
一系列受邀演讲者将介绍其专业领域的最新研究,
在课程中讲授的原则。该课程每年将培训约24名学生,
高级研究生到高级研究员。预计科学家们的应用程序具有
各种科学背景,包括分子进化,发展,神经科学,癌症,
植物生物学和免疫学与其他CSHL研究生课程一样,
功能基因组学的统计方法是提供先进方法的住宿培训
参与者可以立即应用于自己的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charla A Lambert其他文献
Charla A Lambert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charla A Lambert', 18)}}的其他基金
CSHL Statistical Methods for Functional Genomics Course
CSHL 功能基因组学统计方法课程
- 批准号:
10654821 - 财政年份:2021
- 资助金额:
$ 9.21万 - 项目类别:
CSHL Statistical Methods for Functional Genomics Course
CSHL 功能基因组学统计方法课程
- 批准号:
10482328 - 财政年份:2021
- 资助金额:
$ 9.21万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 9.21万 - 项目类别:
Studentship
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Continuing Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 9.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)