Development of End-To-End Clinical Decision Support Tools To Prevent Cardiotoxic Drug Response
开发端到端临床决策支持工具以预防心脏毒性药物反应
基本信息
- 批准号:10088467
- 负责人:
- 金额:$ 77.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAdverse drug effectArrhythmiaArtificial IntelligenceAutomated Clinical Decision SupportBenefits and RisksBiometryCardiotoxicityCertificationClinicalCluster randomized trialColoradoCustomDNADataData ScienceDecision AnalysisDevelopmentElectrocardiogramElectronic Health RecordEnsureExcisionFutureGeneticGenetic RiskGenotypeGoalsHealth TechnologyHealth systemHeritabilityHospitalsIndividualInformation TechnologyInfrastructureInpatientsInstitutionInvestigationLong QT SyndromeMachine LearningMapsMedicalMedical InformaticsMedical RecordsMethodsModelingOutcomeOutpatientsParticipantPatient riskPatient-Focused OutcomesPatientsPersonsPharmaceutical PreparationsPharmacogenomicsPhysiciansPopulationProtocols documentationProviderRecording of previous eventsRelative RisksResearchResearch InfrastructureResearch PersonnelRestRiskRoleSample SizeSamplingScienceSystemTechnologyTestingTimeTorsades de PointesToxic effectUniversitiesValidationVariantWorkanalytical toolbasebiobankclassification algorithmclinical applicationclinical decision supportclinical implementationclinical infrastructurecloud basedcloud platformcloud storagedata modelingdata warehousedeep learningdesigndisorder riskdrug marketelectronic dataexperiencegenetic associationgenetic epidemiologygenetic informationgenetic predictorsgenetic variantgenome wide association studyhealth dataimprovedinnovationinsightmachine learning methodmedical schoolsmedical specialtiesmulti-ethnicpatient safetypersonalized medicinepolygenic risk scorepractical applicationpredictive modelingpreventprimary outcomeresponserisk predictionrisk stratificationsecondary outcomeside effectstudy populationsupport toolstooltrendvigilance
项目摘要
SUMMARY
Drug-induced cardiac toxicity, in the form of QT prolongation and torsade de pointes, is an uncommon but
devastating side effect of over one hundred currently marketed drugs. The ubiquity of drug-induced QT
prolongation (diLQTS) across medical specialties and conditions creates a challenge for providers seeking to
prescribe known QT-prolonging medications, particularly for non-cardiac conditions. Work by our group to
develop automated clinical decision support (CDS) tools that alert providers of patient risk has shown promise
towards reducing the number of prescriptions to at-risk individuals. However, these tools rely on a history of an
electrocardiogram (ECG) with QT prolongation to identify at-risk patients, and thus exclude a large number of
potentially at-risk individuals who have not had an ECG within our system. Through a unique institutional
partnership with Google, in which a copy of our entire electronic health record (EHR) is stored on the Google
Cloud Platform (GCP), we have developed preliminary deep-learning models to predict risk of diLQTS. We
have also validated the genetic association with the QT interval and diLQTS across several real-world
populations using an aggregate polygenic risk score. Through creation of an institutional biobank with
certification for clinical application of results, as well as cloud-based integration of EHR data with genetic data,
we have the capability to leverage our existing infrastructure to study the role of deep learning and genetics to
reduce the risk of diLQTS. This investigation will combine our unique research and clinical
infrastructure on the University of Colorado Anschutz Medical Campus with our investigative team
composed of experts in the study of pharmacogenomics and medical informatics to develop and study
an end-to-end CDS tool incorporating genetics and deep learning to predict risk of diLQTS. The
specific aims of this application include the following: (1) develop and test a cloud-based, deep-learning model
using EHR data on in- and outpatients to predict risk of diLQTS; (2) validate genetic predictors of diLQTS using
institutional biobank samples, and a multi-ethnic external population; and (3) develop and test CDS tools using
these advanced methods to reduce the risk of diLQTS. We will use a common data model (Observational
Medical Outcomes Partnership) mapped from EHR data, as well as a custom DNA array (Multi-Ethnic
Genotyping Array) designed for imputation across a variety of non-European ancestries, to ensure that the our
prediction model and findings from this study can be replicated in other institutions and populations in the
future. In such a way, this investigation will not only provide insight into the use of machine learning and
genetics for risk prediction of diLQTS, but it will also create a blueprint for future advanced CDS development
for other conditions.
总结
以QT间期延长和尖端扭转型室性心动过速为形式的药物诱导的心脏毒性是一种不常见的,
目前市场上有超过一百种药物的副作用。药物诱导QT间期的普遍性
延长(diLQTS)跨医学专业和条件创造了一个挑战,为供应商寻求
处方已知的QT延长药物,特别是用于非心脏疾病。通过我们的团队,
开发自动化临床决策支持(CDS)工具,提醒提供者患者风险已显示出希望
减少对高危人群的处方数量。然而,这些工具依赖于
心电图(ECG)与QT间期延长,以确定有风险的患者,从而排除了大量的
在我们的系统中没有ECG的潜在风险个体。通过一个独特的机构
与Google合作,我们的整个电子健康记录(EHR)的副本存储在Google上。
云平台(GCP),我们已经开发了初步的深度学习模型来预测diLQTS的风险。我们
还验证了QT间期和diLQTS在几个现实世界中的遗传关联
使用多基因风险评分的总体人群。通过建立一个机构生物库,
对结果的临床应用进行认证,以及基于云的EHR数据与遗传数据的集成,
我们有能力利用现有的基础设施来研究深度学习和遗传学的作用,
降低diLQTS的风险。本研究将联合收割机结合我们独特的研究和临床
科罗拉多大学安舒茨医学院的基础设施与我们的调查团队
由研究药物基因组学和医学信息学的专家组成,
一种端到端CDS工具,结合遗传学和深度学习来预测diLQTS的风险。的
该应用程序的具体目标包括:(1)开发和测试基于云的深度学习模型
使用住院和门诊患者的EHR数据预测diLQTS的风险;(2)使用
机构生物库样本和多种族外部人群;(3)开发和测试CDS工具,
这些先进的方法来降低dilQTS的风险。我们将使用公共数据模型(观察
医学成果伙伴关系),以及定制的DNA阵列(多民族
基因分型阵列),旨在填补各种非欧洲血统,以确保我们的
预测模型和这项研究的结果可以在其他机构和人口中复制。
未来通过这种方式,这项调查不仅可以深入了解机器学习的使用,
这一发现不仅为diLQTS的风险预测提供了遗传学基础,而且还将为未来先进的CDS开发创造蓝图。
其他情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Rosenberg其他文献
To the editor--Spontaneous conversion of a long RP to short RP tachycardia: what is the mechanism?
致编者——长 RP 自发转变为短 RP 心动过速:机制是什么?
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.5
- 作者:
Michael A Rosenberg;Maheer Gandhavadi;Alex Y. Tan - 通讯作者:
Alex Y. Tan
PRIME score for prediction of permanent pacemaker implantation after transcatheter aortic valve replacement
预测经导管主动脉瓣置换术后永久起搏器植入的 PRIME 评分
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Christopher D Barrett;A. Nickel;Michael A Rosenberg;Karen S. Ream;Wendy S. Tzou;Ryan G. Aleong;Alexis Tumolo;Lohit Garg;M. Zipse;J. West;P. Varosy;Amneet Sandhu - 通讯作者:
Amneet Sandhu
Increased incidence of cavotricuspid isthmus atrial flutter following slow pathway ablation
慢径路消融后三尖瓣峡部心房扑动的发生率增加
- DOI:
10.1007/s10840-021-01065-0 - 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
D. Varela;Michael A Rosenberg;R. Borne;Amneet Sandhu;M. Zipse;Wendy S. Tzou;W. Sauer;M. Scheinman;D. Nguyen - 通讯作者:
D. Nguyen
Evaluating temperature gradients across the posterior left atrium with radiofrequency ablation
通过射频消融评估左心房后部的温度梯度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amneet Sandhu;Blair Holman;S. Lammers;L. Cerbin;Christopher D Barrett;Rafay Sabzwari;Lohit Garg;M. Zipse;Alexis Tumolo;Ryan G. Aleong;Johannes C. von Alvensleben;Michael A Rosenberg;J. West;P. Varosy;Duy T Nguyen;W. Sauer;Wendy S. Tzou - 通讯作者:
Wendy S. Tzou
Impact of an Alert-Based Inpatient Clinical Decision Support Tool to Prevent Drug-Induced Long QT Syndrome: Large-Scale, System-Wide Observational Study
基于警报的住院患者临床决策支持工具对预防药物诱发长 QT 综合征的影响:大规模、全系统观察性研究
- DOI:
10.2196/68256 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Katy E Trinkley;Steven T Simon;Michael A Rosenberg - 通讯作者:
Michael A Rosenberg
Michael A Rosenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Rosenberg', 18)}}的其他基金
Development of End-To-End Clinical Decision Support Tools To Prevent Cardiotoxic Drug Response
开发端到端临床决策支持工具以预防心脏毒性药物反应
- 批准号:
9887500 - 财政年份:2020
- 资助金额:
$ 77.73万 - 项目类别:
Development of End-To-End Clinical Decision Support Tools To Prevent Cardiotoxic Drug Response
开发端到端临床决策支持工具以预防心脏毒性药物反应
- 批准号:
10361395 - 财政年份:2020
- 资助金额:
$ 77.73万 - 项目类别:
Development of End-To-End Clinical Decision Support Tools To Prevent Cardiotoxic Drug Response
开发端到端临床决策支持工具以预防心脏毒性药物反应
- 批准号:
10580631 - 财政年份:2020
- 资助金额:
$ 77.73万 - 项目类别: