Assessing the power of primary drug-screens to predict clinical response.
评估初级药物筛选预测临床反应的能力。
基本信息
- 批准号:10092124
- 负责人:
- 金额:$ 13.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:ABL1 geneAccountingAddressAdvisory CommitteesAftercareBiologicalBiological AssayCancer PatientCancer cell lineCell LineChronic Myeloid LeukemiaClinicalClinical DataClinical TrialsCombined Modality TherapyCommittee MembersComplexComputer ModelsComputing MethodologiesDataData AnalysesData SetData SourcesDecision MakingDevelopmentDiagnosisDrug CombinationsDrug ScreeningERBB2 geneEvaluationFacultyFreezingFutureGenomicsGerman populationGoalsGuidelinesIn VitroInstitutesLeadLearningLeukemic CellMachine LearningMalignant NeoplasmsMediatingMentorsMethodsModelingMorphologic artifactsOncologyOutcomePatient CarePatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacotherapyPhasePositioning AttributePrediction of Response to TherapyPredictive ValueProcessRandomized Clinical TrialsReadingResearch PersonnelResistanceRiskSample SizeSamplingScreening for cancerSelection for TreatmentsSourceSubgroupSystemSystems BiologyTechnologyTestingTreatment ProtocolsValidationWeightWorkarmbasecancer biomarkerscancer cellcancer subtypescancer therapycare outcomesclinical decision-makingclinical predictorscohortcombinatorialconventional therapydesigndrug response predictiondrug sensitivitydrug testingexhaustionexperimental studyhigh-throughput drug screeningimprovedindividual patientinhibitor/antagonistlarge datasetsleukemiamalignant breast neoplasmmodel designmultiple omicsmultitasknew combination therapiesnovel therapeuticspatient screeningpatient stratificationphosphoproteomicsprecision medicineprecision oncologypredictive testprimary outcomeprognosticresponsescreeningstandard of caresurvival predictiontargeted agenttargeted cancer therapytargeted treatmenttranscriptome sequencingtranscriptomicstreatment armtreatment responsetumortumor heterogeneityvalidation studies
项目摘要
PROJECT SUMMARY
Precision oncology relies on the hypothesis that further characterizing a patient's tumor will lead to better
predictions of treatment response. While this approach effectively breaks diagnoses into smaller and smaller
subtypes likely to respond to a given targeted inhibitor, the downside is it results in highly fragmented clinical
data spread across multiple treatment arms. The more progress the field makes in assigning new therapies,
the harder it will be to accrue adequate sample size to test another therapy. Direct screening of cancer cell
lines and primary samples on panels of targeted inhibitors is a uniquely promising approach to this problem,
turning every patient sample into a hundred mini experiments, but clinical validation of in vitro drug-response
predictions have been hampered by limited numbers of patients who are screened and actually treated with
any given drug. Such an evaluation is critical to determine the predictive value gained from drug screening of
patient samples.
Over the past seven years the Knight Cancer Institute has performed drug screening paired alongside genomic
and/or RNA sequencing for over 600 primary leukemic samples. Within two years, we will have accumulated
over 200 patients not only screened for in vitro drug response but then treated with matched targeted
inhibitors. I will leverage this existing and growing dataset to interrogate the power of in vitro drug screening
data to predict clinical response using retrospective data. I will establish a robust framework for primary drug
screening and analysis, build interpretable models for clinical decision making, and explore mechanisms
controlling drug response. This project will result in improvements to high-throughput drug screening, a
thorough accounting of the predictive power of in vitro drug screening, and candidates for treatment
combinations in resistant tumors.
My goal is to become an independent investigator and cross-disciplinary leader in patient sample multi-omic
profiling, targeted therapy selection, and translational oncology. During my mentored phase I will be receiving
guidance from Dr. Emek Demir, an expert in computational modeling of systems biology, Dr. Jeffery Tyner, a
leader in patient sample drug screening and validation, and Dr. Brian Druker, a pioneer of targeted cancer
therapy and director of the Knight Cancer Institute. I will also improve my statistical understanding of complex
systems by working with my advisory committee member Dr Tomi Mori, learn to integrate large datasets and
predicting patient outcomes from Dr. Shannon McWeeney, and improve upon existing drug screening
platforms and analysis methods with Dr. Laura Heiser. I am determined to attain an independent faculty
position and my mentors have committed to assisting me in the application and transition process.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Matthew Watanabe-Smith其他文献
Kevin Matthew Watanabe-Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别: