PPARG-dependent Mechanisms Control Endothelial-Smooth Muscle Coordination, Arterial Pressure, Vasomotor Function and Arterial Stiffness
PPARG 依赖性机制控制内皮-平滑肌协调、动脉压、血管舒缩功能和动脉僵硬度
基本信息
- 批准号:10092211
- 负责人:
- 金额:$ 92.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntioxidantsBindingBiological AvailabilityBlood PressureBlood VesselsComplexContractsCyclic GMPDataDiseaseDisease modelEndotheliumFutureGenetic TranscriptionHypertensionInvestigationMediatingMediator of activation proteinModelingMolecularMolecular TargetNitric OxideNitric Oxide PathwayNuclear ReceptorsOxidation-ReductionPPAR gammaPPARG genePathway interactionsPhenotypePhysiologicalPlayPost-Translational RegulationProductionProteomicsRXRRegulationResearchRetinol Binding ProteinsRho-associated kinaseRoleSignal TransductionSmooth MuscleStructureTherapeuticVascular DiseasesVascular Smooth MuscleVasoconstrictor AgentsVasodilationVasodilator AgentsVasomotorVisionarterial stiffnessblood pressure regulationcell typechromatin immunoprecipitationcomorbidityconstrictioncullin-3genome-widenovelphosphodiesterase Vpressureprogramsprotein degradationresponsesensortranscription factortranscriptomeubiquitin-protein ligase
项目摘要
Summary/Abstract
Blood vessels play an important role in the regulation of arterial blood pressure (BP). Precise BP regulation
requires coordination between vasodilator and vasoconstrictor signals in the endothelium (EC) and smooth
muscle (SMC). EC-derived nitric oxide (NO) is among the key signals which instruct the SMC to dilate or
contract. Our studies show that the NO pathway is coordinately regulated through transcriptional and post-
translational pathways initiated by PPARγ, a nuclear receptor transcription factor. Our data support the
concepts that PPARγ: 1) acts as a sensor in EC to regulate redox state, and through this, bioavailability of NO,
and 2) regulates the responsiveness of SMC to NO by independently controlling a) a RhoA/Rho kinase
(ROCK) activity that promotes constriction, and b) production and stability of cyclic GMP (cGMP), a critical
mediator of vasodilation. The range of PPARγ-dependent molecular mechanisms in both cell types is
surprisingly complex; requiring novel transcriptional co-factors (e.g. retinol binding protein 7; RBP7) which form
a transcriptional regulatory hub with PPARγ, and post-translational regulation of critical SMC mediators (RhoA
and phosphodiesterase 5, PDE5) by Cullin-3 E3 ubiquitin ligase-mediated protein turnover. Importantly, this
PPARγ initiated “final common pathway” has profound effects on vasomotor function, BP and vascular
stiffness, and the studies proposed herein have potential implications for the treatment of these disorders.
However, the signals which initiate and mediate these responses and the range of molecular targets remain
poorly understood. This proposal will focus on two distinct PPARγ-regulated pathways. We will examine the
PPARγ-RhoBTB1-Cullin-3 pathway in smooth muscle and will 1) determine if the RhoBTB1-Cullin-3 pathway
can be exploited as a potential future therapeutic by assessing if RhoBTB1 can protect and reverse
phenotypes in models of hypertension or in other disease models in which vascular dysfunction is a
comorbidity, 2) determine if RhoBTB1 is important in other cells types including endothelium, and 3) employ a
proteomic strategy to identify novel RhoBTB1 binding partners and Cullin-3 substrates in vascular smooth
muscle. We will also examine the PPARγ-RBP7-anti-oxidant pathway in endothelium and will perform 1)
structure function analysis to identify key mechanisms regulating PPARγ transcriptional activity by RBP7, and
2) genome wide transcriptome and chromatin immunoprecipitation studies to assess the contribution of RBP7
to mediated transcriptional activity of PPARγ and its obligate heterodimer RXR. This program will lead to new
concepts and directions of investigation for the field and will not only deepen our understanding of the role of
two fundamentally important pathways in the vasculature, but will also address fundamental transcriptional and
post-translational mechanisms that are of relevance in many cell types.
摘要/摘要
血管在动脉血压的调节中起着重要的作用。精确BP调节
需要在内皮细胞(EC)中血管舒张和血管收缩信号之间的协调,
肌肉(SMC)。EC衍生的一氧化氮(NO)是指示SMC扩张或收缩的关键信号之一。
合同我们的研究表明,NO通路是通过转录和后表达协同调控的。
核受体转录因子PPARγ启动的翻译途径。我们的数据支持这一
概念认为,PPARγ:1)在EC中作为传感器调节氧化还原状态,并通过此调节NO的生物利用度,
和2)通过独立控制a)RhoA/Rho激酶,
(ROCK)促进收缩的活性,和B)环GMP(cGMP)的产生和稳定性,环GMP是一种关键的
血管舒张介质。在两种细胞类型中,PPARγ依赖性分子机制的范围是
令人惊讶地复杂;需要新的转录辅因子(例如视黄醇结合蛋白7; RBP 7),其形成
一个转录调控中心与过氧化物酶体增殖物激活受体γ,和翻译后调控的关键SMC介质(RhoA
和磷酸二酯酶5,PDE 5)通过Cullin-3E 3泛素连接酶介导的蛋白质周转。重要的是这
PPARγ启动的“最终共同通路”对血管功能、血压和血管内皮细胞的功能有着重要的影响。
僵硬,并且本文提出的研究对这些疾病的治疗具有潜在的意义。
然而,启动和介导这些反应的信号和分子靶点的范围仍然存在,
不太了解。该提案将重点关注两种不同的PPARγ调节途径。我们会研究
PPARγ-RhoBTB 1-Cullin-3通路,并将1)确定RhoBTB 1-Cullin-3通路是否
可以通过评估RhoBTB 1是否可以保护和逆转
表型在高血压模型或其他疾病模型中的应用,其中血管功能障碍是高血压的主要原因。
同时,2)确定RhoBTB 1在包括内皮在内的其他细胞类型中是否重要,以及3)采用
蛋白质组学策略鉴定血管平滑肌中新的RhoBTB 1结合伴侣和Cullin-3底物
肌肉.我们还将检查内皮中的PPARγ-RBP 7-抗氧化途径,并将进行1)
结构功能分析,以确定RBP 7调节PPARγ转录活性的关键机制,以及
2)全基因组转录组和染色质免疫沉淀研究,以评估RBP 7的贡献
对PPARγ及其异源二聚体RXR介导的转录活性的影响。该计划将导致新的
的概念和方向的调查领域,不仅将加深我们的理解的作用,
血管系统中的两个根本性的重要途径,但也将解决基本的转录和
在许多细胞类型中具有相关性的翻译后机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curt Daniel Sigmund其他文献
Curt Daniel Sigmund的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curt Daniel Sigmund', 18)}}的其他基金
PPARG-dependent Mechanisms Control Endothelial-Smooth Muscle Coordination, Arterial Pressure, Vasomotor Function and Arterial Stiffness
PPARG 依赖性机制控制内皮-平滑肌协调、动脉压、血管舒缩功能和动脉僵硬度
- 批准号:
10337230 - 财政年份:2019
- 资助金额:
$ 92.4万 - 项目类别:
PPARG-dependent Mechanisms Control Endothelial-Smooth Muscle Coordination, Arterial Pressure, Vasomotor Function and Arterial Stiffness
PPARG 依赖性机制控制内皮-平滑肌协调、动脉压、血管舒缩功能和动脉僵硬度
- 批准号:
10565914 - 财政年份:2019
- 资助金额:
$ 92.4万 - 项目类别:
PPG-Genetic and Signaling Mechanisms in the Central Regulation of Blood Pressure
PPG-血压中枢调节的遗传和信号机制
- 批准号:
9278663 - 财政年份:2016
- 资助金额:
$ 92.4万 - 项目类别:
Role of PPARG the PPARG Target Gene RBP7 in the Endothelium
PPARG 的作用 PPARG 靶基因 RBP7 在内皮细胞中的作用
- 批准号:
9249635 - 财政年份:2016
- 资助金额:
$ 92.4万 - 项目类别:
Hypertension: Role of Smooth Muscle Cullin-3 and the CRL3 Complex
高血压:平滑肌 Cullin-3 和 CRL3 复合体的作用
- 批准号:
8956718 - 财政年份:2015
- 资助金额:
$ 92.4万 - 项目类别:
Novel Mechanism Regulating RAS Activity in the Brain: Role in Neurogenic Hypertension
调节大脑 RAS 活性的新机制:在神经源性高血压中的作用
- 批准号:
10213809 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
PPG-Genetic and Signaling Mechanisms in the Central Regulation of Blood Pressure
PPG-血压中枢调节的遗传和信号机制
- 批准号:
7433915 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
Novel Mechanism Regulating RAS Activity in the Brain: Role in Neurogenic Hypertension
调节大脑 RAS 活性的新机制:在神经源性高血压中的作用
- 批准号:
10445017 - 财政年份:2007
- 资助金额:
$ 92.4万 - 项目类别:
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 92.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 92.4万 - 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 92.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 92.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 92.4万 - 项目类别:
Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 92.4万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 92.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)