Advancing Our Understanding of Oligomer Toxicity in Age-Related Amyloid Disorders

增进我们对年龄相关淀粉样蛋白疾病中寡聚物毒性的理解

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Amyloid diseases are a group of highly diverse degenerative disorders, named after the cross-ß-sheet aggregates or amyloid fibrils that are the histopathological hallmarks of these maladies. Prominent examples include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, as well as the systemic transthyretin and light chain amyloidoses. Amyloid fibrils in a given disease generally comprise one specific protein. Aggregation of one of more than 30 different proteins is linked to a spectrum of pathologies. Typically, these proteins are expressed throughout the lifetime of an individual, but misfold, aggregate and accumulate only at an older age. The invariant presence of amyloid structures in affected tissue has led to the formulation of the "amyloid hypothesis", i.e., the idea that the process of protein aggregation causes tissue degeneration by a toxic gain-of-function mechanism. However, the mechanistic connection between protein aggregation and tissue degeneration is not understood yet. Amyloid structures can be present in fairly large quantities in affected individuals without causing symptoms. Therefore, the leading, but still highly controversial hypothesis postulates that small, soluble oligomeric aggregates of the misfolded proteins are drivers of the toxicity cascade. The objective of the proposed project is to scrutinize the oligomer toxicity hypothesis and to gain insight into the mechanism of oligomer toxicity by studying oligomers isolated from patients with transthyretin amyloidosis. Importantly, this is the only amyloid disease where a regulatory agency approved anti-amyloidogenic drug that halts disease progression is available. It is therefore possible to repeatedly obtain blood samples from presymptomatic and symptomatic patients, as well as from patients undergoing anti-amyloidogenic treatment. I will immunoisolate and characterize patient-derived transthyretin oligomers and decipher the cytotoxicity pathways activated in primary tissue cultures using transcriptomics and proteomics (K99). The next step will then be to probe these findings in vivo, to expand the knowledge gained to the most common age-related neurodegenerative disorders, namely Alzheimer's and Parkinson's diseases, and to evaluate the therapeutic potential of interference with the disclosed pathways (R00). The outcomes are expected to have an important positive impact because they comprehensively delineate the contribution of oligomeric protein aggregates to tissue degeneration and are anticipated to guide the field in its endeavor to develop effective, targeted and successful therapeutics for age-related amyloid disorders.


项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yvonne Simone Eisele其他文献

Yvonne Simone Eisele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yvonne Simone Eisele', 18)}}的其他基金

Advancing Our Understanding of Oligomer Toxicity in Age-Related Amyloid Disorders
增进我们对年龄相关淀粉样蛋白疾病中寡聚物毒性的理解
  • 批准号:
    9137631
  • 财政年份:
    2015
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 24.9万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 24.9万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 24.9万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 24.9万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了