Statistical Methods for Ultrahigh-dimensional Biomedical Data

超高维生物医学数据的统计方法

基本信息

  • 批准号:
    10093056
  • 负责人:
  • 金额:
    $ 29.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

This proposal develops novel statistics and machine learning methods for distributed analysis of big data in biomedical studies and precision medicine and for selecting a small group of molecules that are associated with biological and clinical outcomes from high-throughput data such as microarray, proteomic, and next generation sequence from biomedical research, especially for autism studies and Alzheimer’s disease research. It focuses on developing efficient distributed statistical methods for Big Data computing, storage, and communication, and for solving distributed health data collected at different locations that are hard to aggregate in meta-analysis due to privacy and ownership concerns. It develops both computationally and statistically efficient methods and valid statistical tools for exploring heterogeneity of big data in precision medicine, for studying associations of genomics and genetic information with clinical and biological outcomes, and for feature selection and model building in presence of errors-in- variables, endogeneity, and heavy-tail error distributions, and for predicting clinical outcomes and understanding molecular mechanisms. It introduces more robust and powerful statistical tests for selection of significant genes, SNPs, and proteins in presence of dependence of data, valid control of false discovery rate for dependent test statistics, and evaluation of treatment effects on a group of molecules. The strength and weakness of each proposed method will be critically analyzed via theoretical investigations and simulation studies. Related software will be developed for free dissemination. Data sets from ongoing autism research, Alzheimer’s disease, and other biomedical studies will be analyzed by using the newly developed methods and the results will be further biologically confirmed and investigated. The research findings will have strong impact on statistical analysis of high throughput big data for biomedical research and on understanding heterogeneity for precision medicine and molecular mechanisms of autism, Alzheimer’s disease, and other diseases.
该建议为分布式分析开发了新的统计和机器学习方法 生物医学研究和精准医学中的大数据,以及选择一小群 与来自高通量数据的生物学和临床结果相关的分子 例如来自生物医学研究微阵列、蛋白质组和下一代序列, 尤其是自闭症研究和阿尔茨海默病研究。它专注于开发 用于大数据计算、存储和通信的高效分布式统计方法, 用于解决在不同位置收集的难以聚合的分布式健康数据 出于隐私和所有权方面的考虑,在荟萃分析中。它在计算和计算方面都得到了发展 用于探索大数据异构性的统计高效方法和有效的统计工具 精确医学,用于研究基因组学和遗传信息与临床的关系 和生物学结果,以及在存在错误的情况下进行特征选择和模型建立。 变量、内生性和重尾误差分布,以及用于预测临床结果 以及了解分子机制。它引入了更强大的统计功能 在存在数据依赖性的情况下选择重要基因、SNPs和蛋白质的测试, 有效控制相依试验统计的误发率,并对治疗进行评估 对一组分子的影响。每种建议方法的优点和缺点如下 通过理论调查和模拟研究进行了批判性分析。相关软件将被 为免费传播而开发的。来自正在进行的自闭症研究的数据集,阿尔茨海默病, 和其他生物医学研究将通过使用新开发的方法和 结果将得到进一步的生物学证实和调查。研究结果将会有 对生物医学研究等高通量大数据的统计分析产生强烈影响 了解精准医学的异质性和自闭症的分子机制, 阿尔茨海默氏症和其他疾病。

项目成果

期刊论文数量(89)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection.
Hoeffding's inequality for general Markov chains with its applications to statistical learning.
PROJECTED PRINCIPAL COMPONENT ANALYSIS IN FACTOR MODELS.
在因子模型中预计主成分分析。
  • DOI:
    10.1214/15-aos1364
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Fan J;Liao Y;Wang W
  • 通讯作者:
    Wang W
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.
Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury
  • DOI:
    10.1038/s41593-018-0324-9
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Zhou, Tian;Zheng, Yiming;Ren, Yi
  • 通讯作者:
    Ren, Yi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matias Damian Cattaneo其他文献

Matias Damian Cattaneo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了