Tracing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms
追踪骨髓增生性肿瘤中单个癌细胞的谱系历史和分化轨迹
基本信息
- 批准号:10097469
- 负责人:
- 金额:$ 44.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2026-01-14
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute leukemiaAllogeneic Bone Marrow TransplantationAnimal ModelAtlasesBloodBlood CellsBone MarrowBone marrow biopsyCRISPR/Cas technologyCell CommunicationCell DeathCell Differentiation processCell divisionCellsCessation of lifeCicatrixDNADataDevelopmentDiagnosisDiseaseDisease OutcomeDisease ProgressionEngineeringErythrocytesEventGene ExpressionGenealogyGenomeGenotypeGrowthHematologic NeoplasmsHematopoieticHematopoietic NeoplasmsHematopoietic stem cellsHeritabilityHeterogeneityHumanIn SituIn VitroIndividualJAK2 geneMalignant NeoplasmsMeasurementMeasuresMicroscopyMolecularMothersMusMutateMutationMyeloproliferative diseaseNatureNucleotidesPatientsPatternPhenotypePlatelet Count measurementPoint MutationPopulationProceduresProcessProliferatingRecording of previous eventsResearchResolutionRoleSeriesSomatic MutationSymptomsTechnologyTestingTherapeutic StudiesTimeTissuesTreesUnited Statescancer cellcancer stem celldisease phenotypegenome sequencingindividual patientmouse modelpatient populationpatient subsetsprogenitorprogramsstem cellstargeted treatmenttherapeutic evaluationtime usetooltranscriptometranscriptomicstreatment strategytumor progressionwhole genome
项目摘要
Project Summary
In some cancers, intriguingly, the same mutation results in drastically different disease phenotypes in different
patients. An example is a type of blood cancer, known as myeloproliferative neoplasm (MPN), where a single
nucleotide change in the JAK2 gene, may result in either an increase in the number of red blood cells, an increase
in the number of platelets, or scarring of bone marrow tissue, in different patients. The disease outcome is just
as unpredictable. Some patients show no symptoms for decades whereas others rapidly progress to acute
leukemias. This disconnect between genotype and phenotype may be due to the identity of the hematopoietic
stem cell (HSC) in which the mutation first occurs. Not all HSCs are equivalent and some may preferentially give
rise to certain types of blood cells. Additionally, the subsequent expansion of the population of mutated stem
cells may be different in different patients. Therefore, to understand the heterogeneity in disease presentation,
we would like to know when and in which cell the cancer mutation first occurred in each patient, how the
population of mutated HSCs expanded, and to what extent the differentiation trajectory of the cancer cells
deviates from that of the healthy cells. Here, we propose a comprehensive research program to make these
measurements in individual MPN patients. To understand the difference between the cancer cells and the
healthy cells in each patient, we will profile each cell individually. Bulk measurements average over the cancer
cells and healthy cells, and obscure different cell states along the differentiation trajectory. We have recently
developed a technology platform to simultaneously read out the full transcriptome and the cancer mutation in
single cells. We will apply this platform to cells obtained from bone marrow biopsies of MPN patients. To obtain
the history of the expansion of the cancer stem cells in each patient, we will reconstruct the lineage tree of the
HSCs by sequencing the somatic mutations in the whole genomes of individual HSCs. Somatic mutations occur
randomly at each cell division and are passed on to a cell’s descendants. Critically, we will also trace the
differentiation trajectories of the progenies of each HSC by identifying the somatic mutations that uniquely mark
each HSC in our single-cell transcriptomic data. Taken together, these measurements will provide the most
detailed molecular picture of MPN at a single-cell resolution and the most comprehensive molecular history of
cancer progression in individual patients. Finally, to identify and test potential therapies for MPN, we will engineer
animal models whereby lineage histories of individual cells can be obtained without whole genome sequencing.
We will engineer a mouse model of MPN in which individual cells record their lineage histories in their own DNA
by using Cas9 to induce heritable mutations in synthetic target arrays that are transcribed and read out using
sequencing. Our proposal will answer some of the most outstanding and fundamental questions about MPNs
and blood development. Ultimately, our measurements should reveal patient-specific targeted therapies that
preferentially eradicate the cancer stem cells or hinder their differentiation.
项目摘要
有趣的是,在某些癌症中,相同的突变会导致不同的疾病表型截然不同。
病人。一种被称为骨髓增生性肿瘤(MPN)的血癌就是一个例子,在这种肿瘤中,单个
JAK2基因的核苷酸变化,可能导致红细胞数量的增加,增加
不同患者的血小板数量,或骨髓组织的疤痕形成。疾病的结局就是
是不可预测的。一些患者几十年来没有任何症状,而另一些患者则迅速发展为急性
白血病。这种基因和表型之间的脱节可能是由于造血者的同一性。
首先发生突变的干细胞(HSC)。并不是所有的HSC都是等价的,有些可能会优先给予
上升到某些类型的血细胞。此外,突变茎的种群随后的扩张
不同患者的细胞可能不同。因此,要了解疾病表现的异质性,
我们想知道癌症突变最早发生在每个患者的什么时候以及哪个细胞中,
突变的HSC群体扩大,以及癌细胞的分化轨迹达到什么程度
与健康细胞的情况有所不同。在这里,我们提出了一个全面的研究计划,以使这些
对MPN患者个体进行测量。为了了解癌细胞和癌细胞之间的区别
对于每个患者的健康细胞,我们将分别对每个细胞进行分析。在癌症上的平均体积测量
细胞和健康细胞,并沿着分化轨迹模糊不同的细胞状态。我们最近做了
开发了一种技术平台,可以同时读取完整的转录组和癌症突变
单细胞。我们将把这个平台应用于从MPN患者的骨髓活检中获得的细胞。为了获得
每名患者的肿瘤干细胞扩增历史,我们将重建
通过对单个HSCs的整个基因组中的体细胞突变进行测序。发生体细胞突变
在每个细胞分裂时随机产生,并传递给细胞的后代。重要的是,我们还将跟踪
通过识别唯一标记的体细胞突变来研究每个HSC后代的分化轨迹
我们的单细胞转录数据中的每个HSC。总而言之,这些测量将提供最大的
MPN在单细胞分辨率下的详细分子图像和最全面的分子史
个别患者的癌症进展情况。最后,为了确定和测试MPN的潜在治疗方法,我们将设计
无需全基因组测序即可获得单个细胞的谱系历史的动物模型。
我们将设计一种MPN的小鼠模型,在该模型中,单个细胞在自己的DNA中记录它们的谱系历史
通过使用Cas9在合成靶点阵列中诱导可遗传突变,这些靶点阵列被转录并使用
测序。我们的提案将回答有关MPN的一些最突出和最基本的问题
和血液发育。最终,我们的测量应该揭示出针对患者的靶向治疗
优先根除肿瘤干细胞或阻碍其分化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sahand Hormoz其他文献
Sahand Hormoz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sahand Hormoz', 18)}}的其他基金
Tracing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms
追踪骨髓增生性肿瘤中单个癌细胞的谱系历史和分化轨迹
- 批准号:
10550185 - 财政年份:2021
- 资助金额:
$ 44.25万 - 项目类别:
Tracing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms
追踪骨髓增生性肿瘤中单个癌细胞的谱系历史和分化轨迹
- 批准号:
10327270 - 财政年份:2021
- 资助金额:
$ 44.25万 - 项目类别:
Lineage-based inference of cell state transition dynamics in development and disease
基于谱系的发育和疾病中细胞状态转变动力学的推断
- 批准号:
9089662 - 财政年份:2016
- 资助金额:
$ 44.25万 - 项目类别:
Lineage-based inference of cell state transition dynamics in development and disease
基于谱系的发育和疾病中细胞状态转变动力学的推断
- 批准号:
9533037 - 财政年份:2016
- 资助金额:
$ 44.25万 - 项目类别:
相似海外基金
Targeting Menin in Acute Leukemia with Upregulated HOX Genes
通过上调 HOX 基因靶向急性白血病中的 Menin
- 批准号:
10655162 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
- 批准号:
10651543 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Experimental and preclinical modeling of NUP98-rearranged acute leukemia
NUP98重排急性白血病的实验和临床前模型
- 批准号:
10829603 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
- 批准号:
10839678 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
A Systems Epidemiology Approach for Predicting Methotrexate Neurotoxicity in Pediatric Acute Leukemia
预测儿童急性白血病甲氨蝶呤神经毒性的系统流行病学方法
- 批准号:
10655716 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Anti-CD25 Radioimmunotherapy and Total Marrow Irradiation for Treatment of Relapsed and Refractory Acute Leukemia
抗CD25放射免疫治疗和全骨髓照射治疗复发难治性急性白血病
- 批准号:
10435886 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
mRNA stability and its impact on hematopoiesis and acute leukemia
mRNA稳定性及其对造血和急性白血病的影响
- 批准号:
10339742 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Diversifying Acute Leukemia Clinical Trial Enrollment Through Multilevel Intervention
通过多层次干预使急性白血病临床试验招募多样化
- 批准号:
10505579 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Clonal dynamics and chemoresistance mechanisms of minimal residual disease in acute leukemia
急性白血病微小残留病的克隆动力学和化疗耐药机制
- 批准号:
10351765 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:
Anti-CD25 Radioimmunotherapy and Total Marrow Irradiation for Treatment of Relapsed and Refractory Acute Leukemia
抗CD25放射免疫治疗和全骨髓照射治疗复发难治性急性白血病
- 批准号:
10576955 - 财政年份:2022
- 资助金额:
$ 44.25万 - 项目类别:














{{item.name}}会员




