Pathogen and Microbiome Temporal Changes During Resolution of HAP

HAP 消退过程中病原体和微生物组的时间变化

基本信息

  • 批准号:
    10097985
  • 负责人:
  • 金额:
    $ 49.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-17 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Project Summary Project 2: Pathogen and Microbiome Temporal Changes During Resolution of HAP Severe pneumonia is a dreaded complication among mechanically ventilated patients and is associated with high rates of mortality. To better understand these challenging infections, we propose to develop the Successful Clinical Response In Pneumonia Therapy (SCRIPT) Systems Biology Center. The overall goal of SCRIPT Research Project 2 is to create a computational model based on microbial biosignatures that predicts clinical failure in patients with ventilator-associated pneumonia. Specific pathogens such as Pseudomonas aeruginosa and Acinetobacter baumannii are particularly problematic in ventilator-associated pneumonia and are associated with clinical failure rates as high as 50%, even in patients treated with appropriate antibiotic therapy. For this reason, we will focus on pneumonia caused by these pathogens. Work from our group and others has shown that strains of these bacteria differ dramatically in their ability to cause severe infections. Furthermore, emerging evidence indicates that alterations in the pulmonary microbiome induced by pathogens or by the antibiotics used to treat them may contribute to poor clinical outcomes. We hypothesize that specific genetic biosignatures of P. aeruginosa and Acinetobacter baumannii and other spp. and particular alterations to the pulmonary microbiome are associated with clinical failure in patients with HAP. To test this hypothesis, we will perform the following aims: Aim 1. We will identify genetic biosignatures of P. aeruginosa and A. baumannii strains associated with poor clinical responses in patients with severe pneumonia. Aim 2. We will identify pulmonary microbiome constituents (bacteria, viruses, and fungi) and longitudinal microbiome patterns associated with poor clinical responses in patients with severe pneumonia. Aim 3. Generate a computational model that integrates pathogen genome, pathogen transcriptome, and microbiome components to predict the clinical response in severe pneumonia caused by P. aeruginosa or A. baumannii. The data we generate will be used in an iterative manner to create and optimize a computational model that identifies patients at risk for clinical failure based upon the microbiology of their pneumonia. Highly discriminatory microbiological biosignatures for clinical failure will be further examined to determine whether they play a causal role in the progression of pneumonia.
项目2:HAP缓解期间病原体和微生物组的时间变化 严重肺炎是机械通气患者中可怕的并发症, 高死亡率。为了更好地了解这些具有挑战性的感染,我们建议开发成功的 肺炎治疗临床反应(Clinical Response In Pneumonia Therapy,CNOT)系统生物学中心CBT的总体目标 研究项目2是建立一个基于微生物生物特征的计算模型, 呼吸机相关性肺炎患者的失败。特定病原体,如铜绿假单胞菌 和鲍曼不动杆菌在呼吸机相关性肺炎中尤其成问题, 即使接受适当抗生素治疗的患者,临床失败率也高达50%。为此 因此,我们将重点关注这些病原体引起的肺炎。我们小组和其他人的工作表明 这些细菌的菌株在引起严重感染的能力上有很大的不同。此外,新兴 有证据表明,病原体或所用抗生素引起的肺部微生物组的改变 治疗它们可能会导致不良的临床结果。我们假设,特定的遗传生物签名的P。 铜绿假单胞菌和鲍曼不动杆菌以及其他物种。特别是肺部微生物组的改变 与HAP患者的临床失败有关。为了检验这个假设,我们将执行以下操作 目标:目标1。我们将鉴定铜绿假单胞菌和A.鲍曼不动杆菌相关株 严重肺炎患者的临床反应较差。目标2.我们将识别肺部微生物组 成分(细菌,病毒和真菌)和纵向微生物组模式与不良临床 严重肺炎患者的反应。目标3。生成一个计算模型, 基因组、病原体转录组和微生物组组分预测重度 铜绿假单胞菌或A.鲍曼不动杆菌。我们生成的数据将以迭代的方式使用 创建并优化计算模型,该计算模型基于 肺炎的微生物学临床失败的高度区分性微生物生物特征将 进一步检查,以确定它们是否在肺炎的进展中发挥因果作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALAN R HAUSER其他文献

ALAN R HAUSER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALAN R HAUSER', 18)}}的其他基金

Medical Scientist Training Program
医学科学家培训计划
  • 批准号:
    10641659
  • 财政年份:
    2022
  • 资助金额:
    $ 49.82万
  • 项目类别:
Medical Scientist Training Program
医学科学家培训计划
  • 批准号:
    10827545
  • 财政年份:
    2022
  • 资助金额:
    $ 49.82万
  • 项目类别:
Medical Scientist Training Program
医学科学家培训计划
  • 批准号:
    10333874
  • 财政年份:
    2022
  • 资助金额:
    $ 49.82万
  • 项目类别:
Medical Scientist Training Program
医学科学家培训计划
  • 批准号:
    10664364
  • 财政年份:
    2022
  • 资助金额:
    $ 49.82万
  • 项目类别:
High-Risk Clones of Pseudomonas aeruginosa
铜绿假单胞菌的高风险克隆
  • 批准号:
    10294368
  • 财政年份:
    2021
  • 资助金额:
    $ 49.82万
  • 项目类别:
Assessing SARS-CoV-2 Variant Evolution in Patients
评估患者中的 SARS-CoV-2 变异进化
  • 批准号:
    10426993
  • 财政年份:
    2021
  • 资助金额:
    $ 49.82万
  • 项目类别:
High-Risk Clones of Pseudomonas aeruginosa
铜绿假单胞菌的高风险克隆
  • 批准号:
    10408175
  • 财政年份:
    2021
  • 资助金额:
    $ 49.82万
  • 项目类别:
Dynamics of Pseudomonas aeruginosa During Bacteremia
菌血症期间铜绿假单胞菌的动态
  • 批准号:
    10222524
  • 财政年份:
    2020
  • 资助金额:
    $ 49.82万
  • 项目类别:
Dynamics of Pseudomonas aeruginosa During Bacteremia
菌血症期间铜绿假单胞菌的动态
  • 批准号:
    10042352
  • 财政年份:
    2020
  • 资助金额:
    $ 49.82万
  • 项目类别:
Systems Biology Modeling of Severe Hospital-Acquired Pneumonia
严重医院获得性肺炎的系统生物学模型
  • 批准号:
    10551467
  • 财政年份:
    2018
  • 资助金额:
    $ 49.82万
  • 项目类别:

相似海外基金

Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Research Grant
Generative machine learning for narrow spectrum antibiotic discovery against Acinetobacter baumannii
生成机器学习用于发现针对鲍曼不动杆菌的窄谱抗生素
  • 批准号:
    477936
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Operating Grants
Conserved structural dynamics of outer-membrane channels in Acinetobacter baumannii as potential drug targets
鲍曼不动杆菌外膜通道的保守结构动力学作为潜在的药物靶点
  • 批准号:
    494854
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Operating Grants
Defining key players at the host-pathogen interface during Acinetobacter baumannii infection
定义鲍曼不动杆菌感染期间宿主-病原体界面的关键参与者
  • 批准号:
    488684
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Operating Grants
Study of clinically over-expressed and chimeric RND multidrug efflux pumps from Acinetobacter baumannii and Pseudomonas aeruginosa
鲍曼不动杆菌和铜绿假单胞菌临床过表达和嵌合 RND 多药外排泵的研究
  • 批准号:
    23K14346
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
  • 批准号:
    10674406
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
  • 批准号:
    10677362
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
Inhibitors of adaptive efflux mediated resistance in Acinetobacter baumannii
鲍曼不动杆菌适应性外排介导的耐药性抑制剂
  • 批准号:
    10625029
  • 财政年份:
    2023
  • 资助金额:
    $ 49.82万
  • 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
  • 批准号:
    10449699
  • 财政年份:
    2022
  • 资助金额:
    $ 49.82万
  • 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
  • 批准号:
    10596620
  • 财政年份:
    2022
  • 资助金额:
    $ 49.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了