Angiogenic growth factor delivery for vascular regeneration in critical limb ischemia using acoustically-responsive scaffolds
使用声响应支架输送血管生长因子以促进严重肢体缺血的血管再生
基本信息
- 批准号:10094233
- 负责人:
- 金额:$ 57.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAffectAutomobile DrivingBiocompatible MaterialsBlood VesselsBlood capillariesCardiovascular DiseasesCellsCessation of lifeClinicClinicalClinical TrialsConsensusDevelopmentDoseEmulsionsEncapsulatedFGF2 geneFibrinFocused UltrasoundFrequenciesGenerationsGoalsGrowthGrowth FactorImplantInjectionsInterventionLeadLimb structureMethodsModelingMusNatural regenerationOutcomePatientsPatternPenetrationPerfusionPeripheral arterial diseasePlatelet-Derived Growth FactorPre-Clinical ModelPropertyResearchRiskRouteSignal TransductionSiteSystemTestingTherapeutic IndexTissue EngineeringTissuesTranslatingTranslationsUltrasonographyViscosityactive controlangiogenesisbaseblood vessel developmentclinical translationclinically translatablecritical limb Ischemiahigh riskimprovedin vivolimb amputationlimb ischemiamortalitynovel strategiesplatelet-derived growth factor BBpre-clinicalregenerativerelease factorresponserestorationscaffoldspatiotemporalsubcutaneoussuccesstherapeutic angiogenesistherapeutically effective
项目摘要
ABSTRACT
The clinical use of pro-angiogenic growth factors could greatly impact the treatment of critical limb ischemia
(CLI), a condition characterized by arterial blockages in the extremities. With CLI, 40% of patients are ineligible
for available therapies and even with intervention, the 6-month risk of limb amputation is 25-40% with an
annual mortality of 20%. In preclinical models of CLI, collateral blood vessel formation and perfusion
restoration are observed in the ischemic limb following the administration of angiogenic growth factors.
However, attempts at clinically translating these promising preclinical results, via the use of at-site or systemic
injections of angiogenic growth factors, has remained a challenge. The delivery of growth factors via injection
or using conventional scaffold-based approaches does not afford active control of the dose, timing, or spatial
localization at the intended site of collateral vessel formation. Furthermore, no consensus exists regarding
what range of these parameters, including what combination of growth factors, are required for effective
therapeutic angiogenesis. Thus, there is an urgent need to develop a safe and effective delivery system for
multiple angiogenic growth factors that recapitulates critical aspects of endogenous growth factor signaling and
facilitates identification of these crucial parameters. Our long-term goal is to develop implantable biomaterials
for the delivery of regenerative molecules, where delivery can be manipulated spatiotemporally in an
externally-regulated, on-demand manner. The modulating mechanism is megahertz-range ultrasound, which is
clinically translatable since it can be applied non-invasively, focused with sub-millimeter precision, and
delivered in a spatiotemporally defined manner to sites deep within the body. The objective of this proposal is
to develop an implantable scaffold where the released dose, sequence, and localization of two growth factors
involved in angiogenesis - basic fibroblast growth factor (bFGF) and platelet derived growth factor-BB (PDGF-
BB) - are non-invasively controlled. The scaffold, termed an acoustically-responsive scaffold (ARS), is doped
with two ultrasound-sensitive emulsions that each contain a growth factor. The central hypothesis driving this
project is that ultrasound can spatiotemporally pattern angiogenesis in and around an ARS by controlling the
sequential release of bFGF and PDGF-BB. The rationale for the proposed research is that an ARS enables
the study of how various doses and spatiotemporal gradients of bFGF and PDGF-BB affect the development of
blood vessels, which can be used in the translation of therapeutic angiogenesis for the treatment of CLI. The
hypothesis will be tested via three specific aims: 1) enhance selective release of growth factors from the ARS;
2) use an ARS to demonstrate the impact of spatiotemporally-generated gradients of bFGF on angiogenesis;
and 3) demonstrate restoration of perfusion in a murine hind limb ischemia model using an ARS. Successful
completion of the proposed research is significant since it will elucidate how microenvironmental factors – such
as growth factor doses, spatiotemporal profiles, and sequence – affect angiogenesis.
抽象的
促血管生成生长因子的临床使用可能极大地影响严重肢体缺血的治疗
(CLI),一种以四肢动脉阻塞为特征的疾病。对于 CLI,40% 的患者不符合资格
对于现有的治疗方法,甚至进行干预,6 个月截肢的风险为 25-40%
年死亡率20%。在 CLI 临床前模型中,侧支血管形成和灌注
在施用血管生成生长因子后观察到缺血肢体的恢复。
然而,尝试通过使用现场或系统性方法将这些有希望的临床前结果临床转化
注射血管生成生长因子仍然是一个挑战。通过注射输送生长因子
或使用传统的基于支架的方法无法主动控制剂量、时间或空间
定位于侧支血管形成的预期部位。此外,关于
有效需要这些参数的范围,包括生长因子的组合
治疗性血管生成。因此,迫切需要开发一种安全、有效的给药系统。
多种血管生成生长因子,概括了内源性生长因子信号传导的关键方面,
有助于识别这些关键参数。我们的长期目标是开发可植入生物材料
用于再生分子的递送,其中可以在时空上操纵递送
外部调节、按需方式。调制机制是兆赫范围的超声波,即
临床可转化,因为它可以非侵入性地应用,以亚毫米精度聚焦,并且
以时空限定的方式输送到身体深处的部位。该提案的目标是
开发可植入支架,其中两种生长因子的释放剂量、序列和定位
参与血管生成——碱性成纤维细胞生长因子(bFGF)和血小板衍生生长因子-BB(PDGF-
BB) - 非侵入性控制。该支架被称为声响应支架(ARS),经过掺杂
含有两种超声波敏感乳液,每种乳液都含有生长因子。驱动这一现象的中心假设
该项目的目的是,超声波可以通过控制 ARS 内部和周围的血管生成来形成时空模式的血管生成。
bFGF 和 PDGF-BB 的顺序释放。拟议研究的基本原理是 ARS 能够
研究bFGF和PDGF-BB的不同剂量和时空梯度如何影响发育
血管,可用于转化治疗性血管生成以治疗 CLI。这
该假设将通过三个具体目标进行检验:1)增强 ARS 中生长因子的选择性释放;
2) 使用ARS来证明bFGF时空生成的梯度对血管生成的影响;
3) 使用 ARS 证明小鼠后肢缺血模型中灌注的恢复。成功的
完成拟议的研究具有重要意义,因为它将阐明微环境因素(例如
生长因子的剂量、时空分布和序列会影响血管生成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mario Leonardo Fabiilli其他文献
Mario Leonardo Fabiilli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mario Leonardo Fabiilli', 18)}}的其他基金
Angiogenic growth factor delivery for vascular regeneration in critical limb ischemia using acoustically-responsive scaffolds
使用声响应支架输送血管生长因子以促进严重肢体缺血的血管再生
- 批准号:
10319536 - 财政年份:2017
- 资助金额:
$ 57.67万 - 项目类别:
Angiogenic growth factor delivery for vascular regeneration in critical limb ischemia using acoustically-responsive scaffolds
使用声响应支架输送血管生长因子以促进严重肢体缺血的血管再生
- 批准号:
10516588 - 财政年份:2017
- 资助金额:
$ 57.67万 - 项目类别:
Controlled Vascularization Using Acoustic Droplet-Hydrogel Composites
使用声学液滴-水凝胶复合材料控制血管化
- 批准号:
8866359 - 财政年份:2014
- 资助金额:
$ 57.67万 - 项目类别:
Controlled Vascularization Using Acoustic Droplet-Hydrogel Composites
使用声学液滴-水凝胶复合材料控制血管化
- 批准号:
8698840 - 财政年份:2014
- 资助金额:
$ 57.67万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 57.67万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 57.67万 - 项目类别:
Standard Grant














{{item.name}}会员




