The Mechanism and Regulation of Cytoplasmic and Ciliary Dyneins
细胞质和纤毛动力蛋白的机制和调控
基本信息
- 批准号:10133096
- 负责人:
- 金额:$ 61.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptor Signaling ProteinAlzheimer&aposs DiseaseAutophagosomeBehaviorBindingBinding SitesCellsChemicalsCiliaComplexCryoelectron MicroscopyDevelopmentDiseaseDynein ATPaseExhibitsFutureGenerationsGeometryGoalsIn VitroIntracellular TransportInvestigationKinesinKnock-outLeadLiquid substanceMale InfertilityMicrotubule-Associated ProteinsMicrotubulesMitochondriaMitosisModelingMolecularMotorMovementMutationNeurobiologyNeuropathyPathogenesisPhysiologicalPlayPrimary Ciliary DyskinesiasRecombinantsRegulationResearchRoleSchizophreniaSlideStructureSystemTestingTetrahymenaTubulinWorkarmbiophysical analysiscell motilitycilium motilitycofactordynactinhuman diseasein vivoinhibitor/antagonistlissencephalymolecular imagingmotor neuron degenerationmutantoptical trapspredictive modelingprogramsreconstitutionretrograde transportsimulationsingle moleculesuccesstau Proteinsvesicle transport
项目摘要
Project Summary
Dyneins are AAA+ motors responsible for minus-end-directed motility along microtubules (MTs) and play
fundamental roles in cargo transport, mitosis, and ciliary beating. Dynein is currently the focus of the motor field
as the mechanism of its movement is not well understood in comparison to plus-end-directed kinesins. Despite
rapid transport of dynein-driven cargos in cells, previous in vitro studies identified mammalian dynein as a weak
motor, exhibiting slow motility and producing lower forces than kinesin. Recently, in vitro reconstitution of the
dynein-dynactin machinery revealed that mammalian dynein is autoinhibited when not transporting cargo, and
motility is activated when dynein forms a 2.5 MDa ternary complex with its cofactor dynactin and a cargo binding
adaptor. Therefore, all of the previous in vitro work on mammalian dynein used inactive motor and their
conclusions do not reflect how active dynein-dynactin machinery transports cargos in cells.
Our future goals are to dissect the mechanism of active cytoplasmic dynein complexes and determine how
dynein activation and motility are regulated across multiple scales using single molecule imaging, optical
trapping, MD simulations, and cryoEM. Specifically, we will determine how Lis1 plays a role in the activation of
and regulation of dynein motility. We will also study dynein motility in physiologically relevant conditions and ask
whether MT-associated proteins, MAP7 and Tau, inhibit dynein motility by sterically blocking its tubulin binding
site or by excluding its MT binding via liquid-liquid demixing. We will also characterize the motility of dynein and
dynactin disease mutants to reveal the molecular mechanism of neuropathies associated with these mutations.
Finally, we will reconstitute the entire MT transport machinery using cargo adaptors identified by in vivo studies
of mitochondria, autophagosomes, and vesicle transport, but not yet characterized in vitro. Using this approach,
we will dissect how cargo adaptors regulate motors to control the bidirectional transport of these cargos.
We will also study ciliary dyneins that slide parallel array of axonemal MTs to power ciliary beating. Several
models have been proposed to explain how the sliding activity of dyneins is self-regulated to orchestrate ciliary
oscillations. Predictions that these models make about the mechanism of ciliary dyneins have not been directly
tested. Recently, a recombinant expression system was developed for Tetrahymena outer-arm dynein (OAD),
enabling us to perform in-depth structural and biophysical studies of ciliary dyneins. Unlike cytoplasmic dynein,
OAD forms a heterodimer and is not processive. Using this system, we will characterize the mechanism of OAD
motility and force generation. We will then directly test the predictions of each model by constructing in vitro
geometries that mimic dynein/MT interactions in a beating cilium. Finally, we will identify structural components
that give rise to the nonprocessive motility, curvature sensing, and self-oscillatory behavior of OAD.
The success of our research program will reveal the fundamental mechanochemistry of dynein and how it
achieves retrograde transport of intracellular cargos and drives the self-coordinated oscillations of motile cilia.
项目摘要
动力蛋白是AAA+马达,负责沿着微管(MT)的负末端定向运动,
在货物运输、有丝分裂和纤毛跳动中的基本作用。动力蛋白是目前电机领域研究的热点
因为与正末端导向的驱动蛋白相比,其运动的机制还没有被很好地理解。尽管
在细胞中动力蛋白驱动的货物的快速运输,以前的体外研究确定哺乳动物动力蛋白是一种弱的
运动,表现出缓慢的运动性和产生比驱动蛋白低的力。最近,在体外重建的
动力蛋白-动力蛋白机制揭示了哺乳动物动力蛋白在不运输货物时是自抑制的,
当动力蛋白与其辅因子动力蛋白和货物结合蛋白形成2.5MDa三元复合物时,运动被激活。
适配器因此,之前所有关于哺乳动物动力蛋白的体外工作都使用了失活的马达,
结论并没有反映出主动动力蛋白-动力肌动蛋白机制如何在细胞中转运货物。
我们未来的目标是剖析活跃的细胞质动力蛋白复合物的机制,并确定如何
动力蛋白的激活和运动性使用单分子成像、光学
捕获、MD模拟和冷冻EM。具体来说,我们将确定Lis 1如何在激活
和动力蛋白运动的调节。我们还将研究动力蛋白在生理相关条件下的运动,
MT相关蛋白MAP 7和Tau是否通过空间阻断其微管蛋白结合来抑制动力蛋白运动
位点或通过经由液-液分层排除其MT结合。我们还将描述动力蛋白的运动性,
dynactin疾病突变体,以揭示与这些突变相关的神经病变的分子机制。
最后,我们将使用通过体内研究鉴定的货物衔接子重建整个MT转运机制
线粒体,自噬体和囊泡运输,但尚未在体外表征。使用这种方法,
我们将剖析货物适配器如何调节马达以控制这些货物的双向运输。
我们还将研究纤毛动力蛋白,滑动轴丝MT的平行阵列,以动力纤毛跳动。几
已经提出了一些模型来解释动力蛋白的滑动活动是如何自我调节的,
振荡这些模型对纤毛动力蛋白机制的预测还没有被直接证实。
测试.最近,开发了四膜虫外臂动力蛋白(OAD)的重组表达系统,
使我们能够对纤毛动力蛋白进行深入的结构和生物物理学研究。与细胞质动力蛋白不同,
OAD形成异二聚体并且不进行性。利用这个系统,我们将描述OAD的机制
运动性和力的产生。然后,我们将通过体外构建直接测试每个模型的预测,
在跳动的纤毛中模拟动力蛋白/MT相互作用的几何形状。最后,我们将确定结构组件
引起OAD的非进行性运动、弯曲感测和自振荡行为。
我们的研究计划的成功将揭示动力蛋白的基本机械化学以及它是如何
实现细胞内货物的逆行运输并驱动运动纤毛的自协调振荡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmet Yildiz其他文献
Ahmet Yildiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmet Yildiz', 18)}}的其他基金
The Mechanism and Regulation of Cytoplasmic and Ciliary Dyneins
细胞质和纤毛动力蛋白的机制和调控
- 批准号:
10594962 - 财政年份:2020
- 资助金额:
$ 61.73万 - 项目类别:
The Mechanism and Regulation of Cytoplasmic and Ciliary Dyneins
细胞质和纤毛动力蛋白的机制和调控
- 批准号:
10378048 - 财政年份:2020
- 资助金额:
$ 61.73万 - 项目类别:
Structural and Functional Characterization of Telomere Protection and Maintenance
端粒保护和维持的结构和功能表征
- 批准号:
9262255 - 财政年份:2016
- 资助金额:
$ 61.73万 - 项目类别:
Structural and Functional Characterization of Telomere Protection and Maintenance
端粒保护和维持的结构和功能表征
- 批准号:
9083326 - 财政年份:2016
- 资助金额:
$ 61.73万 - 项目类别:
Mechanism and Coordination of Cytoplasmic Dynein Motility
细胞质动力蛋白运动的机制和协调
- 批准号:
8242076 - 财政年份:2011
- 资助金额:
$ 61.73万 - 项目类别:
Understanding the Mechanism and Regulation of the Human Cytoplasmic Dynein Complex
了解人类细胞质动力蛋白复合物的机制和调节
- 批准号:
9267494 - 财政年份:2011
- 资助金额:
$ 61.73万 - 项目类别:
Mechanism and Coordination of Cytoplasmic Dynein Motility
细胞质动力蛋白运动的机制和协调
- 批准号:
8641392 - 财政年份:2011
- 资助金额:
$ 61.73万 - 项目类别:
Mechanism and Coordination of Cytoplasmic Dynein Motility
细胞质动力蛋白运动的机制和协调
- 批准号:
8450779 - 财政年份:2011
- 资助金额:
$ 61.73万 - 项目类别:
Mechanism and Coordination of Cytoplasmic Dynein Motility
细胞质动力蛋白运动的机制和协调
- 批准号:
8865640 - 财政年份:2011
- 资助金额:
$ 61.73万 - 项目类别:
Mechanism and Coordination of Cytoplasmic Dynein Motility
细胞质动力蛋白运动的机制和协调
- 批准号:
8108831 - 财政年份:2011
- 资助金额:
$ 61.73万 - 项目类别:














{{item.name}}会员




