Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
基本信息
- 批准号:10239078
- 负责人:
- 金额:$ 30.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseBehaviorBiologyBrainCalcium ChannelCardiacCardiac MyocytesCell membraneCell physiologyCellsCommunicationDiffusionDiseaseElectrophysiology (science)EndocrineEpilepsyEpisodic ataxiaEventFunctional disorderIon ChannelIon PumpsIonsKineticsKnowledgeLocationMeasuresMotionNeuronsNoiseParkinson DiseasePhospholipidsPhysiologyPositioning AttributePotassium ChannelResolutionSamplingScienceSignal TransductionSodium ChannelSpeedStretchingSystemTechnologyTestingTimeTissuesTransistorsbasecell behaviorclinical practicedesignelectrical potentialinnovationinsightmechanical propertiesnervous system disordersensorsignal processingspatiotemporalsurface coatingtoolvoltage
项目摘要
PROJECT SUMMARY
Most cellular behaviors and functions rely on cell signaling. A direct approach to detect this event is to record
cellular electrical potentials that are associated with various ionic kinetics during signal processing. It has been
shown that a wide range of high profile diseases, such as epilepsy, episodic ataxia, Alzheimer's, and
Parkinson's, may result from dysfunction of voltage-gated sodium, potassium, and calcium channels. Although
qualitative knowledge of the motions of these ions has been well studied, a quantitative understanding is still
missing because of the lack of tools that would allow high-spatiotemporal-resolution sampling of ion motions
inside cells. My group is dedicated to developing a soft electronic interface for cells and tissues. This synthetic
electronic interface will have similar mechanical properties to the biology, and can organically fuse with the
target cells and tissues, which will not only result in higher signal to noise ratio but also longer recording time
than conventional rigid and bulky recording systems. This five-year project aims to develop an innovative
cellular interface that is composed of an array of highly sensitive three-dimensional field effect transistor (FET)-
based sensors on a stretchable substrate. We use this innovative cellular interface to test the hypothesis that
ionic kinetics, including the speeds of ionic diffusion through ion channels in the cell membrane, ion drift driven
by ion pumps, and inter-cellular signal propagation, entail crucial quantitative information associated with
disorders of electrogenic cells, such as neurons, cardiomyocytes, and electrically excitable endocrine cells.
The sensors can simultaneously record different positions of a single cell or among different cells in a cellular
network, thus enabling us to measure and calculate the time- or speed-related kinetic factors of the ions (i.e.,
the time at which the ions move in or out of the cell membrane and the speed at which they do, respectively).
Also, using an FET design, we can amplify the recorded signal directly at the targeting location, realizing as
much as ten-fold signal amplification. Furthermore, we can differentiate the specific ionic species that are
actively functioning inside and outside of the cells by coating the surfaces of the FET sensors with phospholipid
bilayers that have the corresponding ion channels, allowing the specific ions to permeate the cell membrane,
which would result in a change in electrical potential that could be recorded by the FET sensors. The
information acquired will help gain new insights in cellular communications, with profound implications for brain
sciences, cardiac physiology, and clinical practices.
!
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Xu其他文献
Sheng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Xu', 18)}}的其他基金
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
- 批准号:
10631219 - 财政年份:2022
- 资助金额:
$ 30.67万 - 项目类别:
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
- 批准号:
10504949 - 财政年份:2022
- 资助金额:
$ 30.67万 - 项目类别:
Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
- 批准号:
10673096 - 财政年份:2020
- 资助金额:
$ 30.67万 - 项目类别:
Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
- 批准号:
10029579 - 财政年份:2020
- 资助金额:
$ 30.67万 - 项目类别:
Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
- 批准号:
10437859 - 财政年份:2020
- 资助金额:
$ 30.67万 - 项目类别:
Recording central blood flow velocity waveform by conformal ultrasonic devices
利用适形超声装置记录中心血流速度波形
- 批准号:
9924597 - 财政年份:2019
- 资助金额:
$ 30.67万 - 项目类别:
Noninvasive realtime neuron-modulation by stretchable, large ultrasonic transducer arrays.
通过可拉伸的大型超声换能器阵列进行无创实时神经元调节。
- 批准号:
10121612 - 财政年份:2019
- 资助金额:
$ 30.67万 - 项目类别:
Diagnosing Small Joints by Soft Ultrasound Probes
通过软超声探头诊断小关节
- 批准号:
9437235 - 财政年份:2017
- 资助金额:
$ 30.67万 - 项目类别: