Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
基本信息
- 批准号:10238084
- 负责人:
- 金额:$ 78.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdult Respiratory Distress SyndromeAffectAnimalsAntiviral AgentsApoptosisAreaAvian Influenza A VirusBacterial PneumoniaBindingBiochemistryBiological AssayBirdsCell DeathCell Death Signaling ProcessCellsCessation of lifeChronicClinicalClinical TrialsComplexCrystallizationDataDiseaseDistalDrug KineticsEpithelialGoalsHospitalizationHumanIn VitroInfectionInflammationInflammatoryInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H5N1 SubtypeInfluenza A virusInjuryLaboratoriesLeadLungLung InflammationLung diseasesLytic VirusMediatingMediator of activation proteinModelingMolecular ConformationMolecular TargetMorbidity - disease rateMusMutationNecrosisPathogenicityPathologyPathway interactionsPharmaceutical ChemistryPhosphotransferasesPneumococcal PneumoniaPneumoniaPre-Clinical ModelProteinsPyrimidineRIPK3 geneRegimenReportingResearch PersonnelRheumatoid ArthritisSafetySeriesSignal PathwayStructureStructure-Activity RelationshipSystemic Inflammatory Response SyndromeTNF geneTestingTherapeuticToxic effectTreatment EfficacyVaccinesViralViral PathogenesisViral PneumoniaVirulentVirusVirus Diseasesairway epitheliumanalogappropriate dosebasecell typeclinically relevantdrug discoveryflugenomic RNAhigh riskimprovedin vivoin vivo Modelinfluenza virus straininhibitor/antagonistkinase inhibitorlung injurymortalitymouse modelnovel therapeuticspandemic diseasepandemic influenzaprogramsscaffoldseasonal influenzasensorsmall moleculetherapeutic developmenttherapeutic evaluationtherapeutic targettreatment strategyviral resistance
项目摘要
PROJECT SUMMARY/ABSTRACT
Seasonal influenza A virus (IAV) infections account for over 700,000 hospitalizations and 50,000 annual deaths
in the US alone. Moreover, highly virulent H5 and H7 strains of avian IAV, while currently limited in their spread
between humans, are only a few mutations from acquiring the capacity for widespread transmissibility. As
current vaccines and antiviral strategies are either limited in their efficacy or susceptible to viral resistance and
evasion, identifying new therapeutic entry-points for seasonal and virulent IAV disease, preferably those that
target pathogenic host signaling pathways, is an urgent imperative. We have identified the host kinase RIPK3
as a promising new entry point for therapeutic development against IAV. RIPK3 is the central mediator of a
highly pro-inflammatory form of cell death termed necroptosis, which we have found is a major contributor to
lung injury and inflammation during IAV infection. Both seasonal and pandemic strains of IAV trigger RIPK3-
dependent necrotic lung damage that we propose underlies Acute Respiratory Distress Syndrome (ARDS), as
well as viral and bacterial pneumonia, each of which remain major causes of morbidity and mortality following
IAV infection. Notably, RIPK3 also mediates or amplifies a range of chronic TNF-α-mediated pathologies (such
as rheumatoid arthritis) making it a very attractive new molecular target for multiple inflammatory conditions.
Curiously, given how important a therapeutic target RIPK3 potentially is, no selective RIPK3 inhibitors have
been advanced into clinical trials. We now have developed a new structural class of RIPK3 inhibitor, which we
call the UH15 series, and which is based on a pyrido[2,3-d]pyrimidine scaffold that targets both the ATP- as
well as the allosteric Glu-out pockets of RIPK3. Our preliminary findings reveal that UH15 analogs, after just
one round of optimization, are already more potent than current RIPK3 inhibitors and display promising activity
against IAV induced necrosis in vitro and in vivo. These exciting results highlight the immediate translational
potential of the UH15 series for necrotic lung injury and consequent ARDS and pneumonia triggered by
seasonal and virulent strains of IAV. The goals of our proposal are to iteratively optimize UH15-based
compounds for RIPK3 blockade in vitro and, by use of a rapid mouse model of RIPK3-mediated pathology (the
TNF SIRS model), prioritize compounds for use in vivo (Aim 1). We then propose to assess these UH15
compounds for therapeutic efficacy in a variety of IAV-triggered disease settings, including the scenarios of (1)
high-risk seasonal IAV infections, (2) infection by highly pathogenic avian IAV, and (3) secondary pneumococcal
pneumonia following seasonal IAV infection (Aim 2). The proposed studies bring together a team of researchers
with strong, complementary expertise in small-molecule medicinal chemistry (Cuny), RIPK3 kinase biochemistry
and function in inflammation (Degterev), and RIPK3-mediated cell death signaling during IAV pathogenesis
(Balachandran, Thomas). Successful completion of these Aims has the potential to transform the treatment of
multiple IAV-induced diseases initiated or amplified by necrotic lung injury.
项目总结/摘要
季节性甲型流感病毒(IAV)感染每年导致70多万人住院治疗和5万人死亡
仅在美国。此外,尽管目前在传播方面受到限制,但高毒力的H5和H7禽流感病毒株
在人类之间,只有少数突变才能获得广泛传播的能力。作为
目前的疫苗和抗病毒策略要么在其效力方面受到限制,要么易受病毒抗性的影响,
逃避,确定新的治疗切入点的季节性和毒性IAV疾病,最好是那些
针对病原宿主信号传导途径,是一项紧迫的任务。我们已经鉴定了宿主激酶RIPK 3
作为一个有前途的新的切入点,针对IAV的治疗发展。RIPK 3是一个重要的调节因子,
高度促炎形式的细胞死亡称为坏死性凋亡,我们已经发现这是一个主要因素,
IAV感染时的肺损伤和炎症。季节性和大流行性IAV毒株均触发RIPK 3-
我们认为依赖性坏死性肺损伤是急性呼吸窘迫综合征(ARDS)的基础,因为
以及病毒性和细菌性肺炎,其中每一种都是下列疾病发病和死亡的主要原因:
IAV感染。值得注意的是,RIPK 3还介导或放大了一系列慢性TNF-α介导的病理(如
如类风湿性关节炎),使其成为多种炎性病症的非常有吸引力的新分子靶标。
奇怪的是,考虑到治疗靶点RIPK 3的潜在重要性,没有选择性的RIPK 3抑制剂
已进入临床试验阶段。我们现在已经开发了一种新的结构类型的RIPK 3抑制剂,
这是一种基于吡啶并[2,3-d]嘧啶骨架的药物,它既靶向ATP,
以及RIPK 3的变构Glu外口袋。我们的初步研究结果表明,UH 15类似物,
一轮优化,已经比目前的RIPK 3抑制剂更有效,并显示出有希望的活性
抗IAV诱导的细胞坏死。这些令人兴奋的结果突出了
UH 15系列引发坏死性肺损伤和随后的ARDS和肺炎的可能性
季节性和强毒株。我们建议的目标是迭代优化基于UH 15的
通过使用RIPK 3-介导的病理学的快速小鼠模型(本发明的化合物),
TNF SIRS模型),优先考虑用于体内的化合物(目的1)。然后,我们建议评估这些UH 15
在各种IAV触发的疾病环境中具有治疗功效的化合物,包括(1)
高风险季节性IAV感染,(2)高致病性禽IAV感染,和(3)继发性肺炎球菌
季节性IAV感染后的肺炎(目的2)。这项拟议中的研究汇集了一组研究人员,
在小分子药物化学(Cuny)、RIPK 3激酶生物化学
和炎症中的功能(Degterev),以及IAV发病过程中RIPK 3介导的细胞死亡信号传导
(Balachandran,托马斯).这些目标的成功完成有可能改变治疗
由坏死性肺损伤引发或扩大的多种IAV诱导的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIDDHARTH BALACHANDRAN其他文献
SIDDHARTH BALACHANDRAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIDDHARTH BALACHANDRAN', 18)}}的其他基金
Small-molecule exploitation of ZBP1-driven nuclear necroptosis for cancer immunotherapy
ZBP1 驱动的核坏死性凋亡的小分子开发用于癌症免疫治疗
- 批准号:
10586659 - 财政年份:2023
- 资助金额:
$ 78.93万 - 项目类别:
Harnessing ZBP1-triggered cell death to enhance influenza vaccine responsiveness
利用 ZBP1 触发的细胞死亡来增强流感疫苗的反应性
- 批准号:
10884586 - 财政年份:2023
- 资助金额:
$ 78.93万 - 项目类别:
Role of ZBP1 in pathogenesis of Salmonella biofilms
ZBP1 在沙门氏菌生物膜发病机制中的作用
- 批准号:
10658383 - 财政年份:2023
- 资助金额:
$ 78.93万 - 项目类别:
Necroptosis in SARS-CoV-2 pathogenesis, evolution, and therapy
SARS-CoV-2 发病机制、进化和治疗中的坏死性凋亡
- 批准号:
10433040 - 财政年份:2022
- 资助金额:
$ 78.93万 - 项目类别:
Necroptosis in SARS-CoV-2 pathogenesis, evolution, and therapy
SARS-CoV-2 发病机制、进化和治疗中的坏死性凋亡
- 批准号:
10557863 - 财政年份:2022
- 资助金额:
$ 78.93万 - 项目类别:
Harnessing ZBP1-driven cell death to improve influenza vaccine efficacy
利用 ZBP1 驱动的细胞死亡来提高流感疫苗的功效
- 批准号:
10455196 - 财政年份:2021
- 资助金额:
$ 78.93万 - 项目类别:
Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
- 批准号:
10020307 - 财政年份:2019
- 资助金额:
$ 78.93万 - 项目类别:
Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
- 批准号:
10470746 - 财政年份:2019
- 资助金额:
$ 78.93万 - 项目类别:
Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
- 批准号:
10689229 - 财政年份:2019
- 资助金额:
$ 78.93万 - 项目类别:
Mechanism, Function, and Exploitation of Influenza A Virus-Activated Cell Death
甲型流感病毒激活的细胞死亡的机制、功能和利用
- 批准号:
10247652 - 财政年份:2017
- 资助金额:
$ 78.93万 - 项目类别:
相似海外基金
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6564818 - 财政年份:2001
- 资助金额:
$ 78.93万 - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6410976 - 财政年份:2000
- 资助金额:
$ 78.93万 - 项目类别:
TREATMENT OF ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的治疗
- 批准号:
6370267 - 财政年份:2000
- 资助金额:
$ 78.93万 - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6418789 - 财政年份:2000
- 资助金额:
$ 78.93万 - 项目类别:
TREATMENT OF ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的治疗
- 批准号:
6370266 - 财政年份:2000
- 资助金额:
$ 78.93万 - 项目类别:
TREATMENT OF ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的治疗
- 批准号:
6370265 - 财政年份:2000
- 资助金额:
$ 78.93万 - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6302122 - 财政年份:1999
- 资助金额:
$ 78.93万 - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6309780 - 财政年份:1999
- 资助金额:
$ 78.93万 - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6109540 - 财政年份:1998
- 资助金额:
$ 78.93万 - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6265845 - 财政年份:1998
- 资助金额:
$ 78.93万 - 项目类别: