Computational pathology software for integrative cancer research with three-dimensional digital slides

用于利用三维数字切片进行综合癌症研究的计算病理学软件

基本信息

  • 批准号:
    10238813
  • 负责人:
  • 金额:
    $ 30.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Tissue-based investigation remains a cornerstone of cancer research. With the advent of cost-effective digital scanners, large-scale quantitative investigations are now feasible using high throughput analysis of two- dimensional (2D) image datasets. However, 2D image analytics has its limitations, since pathologic diseases occur in three-dimensional (3D) space and 2D representations suffer from significant information loss. There are major gaps for 3D analytical digital pathology, including lack of image analysis tools to quantitatively process 3D data volumes and lack of an effective and scalable data management and analytical infrastructure to model, curate, query and mine large-scale spatial pathology features and biomarkers. We propose to fill these gaps with a new informatics solution directed at better understanding of 3D tumor micro-environments, with driving use cases on immunotherapy study for enhanced immune cell infiltration for pancreatic ductal adenocarcinoma (PDAC) and pathophysiological study of rapid tumor progression in brain tumor glioblastoma (GBM). In line with Human Tumor Atlas program, we propose to create a novel and comprehensive 3D digital pathology analytics framework to quantitatively analyze spatial patterns of pathologic hallmarks and biomarkers related to disease progression in an authentic 3D tissue environment with quantitative digital pathology image volume processing, spatially integrative histology-molecular image analysis, large-scale spatial data analytics, and key cellular compartment tracking for clinical treatment response test and immunotherapy development. To enable a wide use of informatics tools for 3D digital pathology imaging data in cancer research, we will further upgrade a comprehensive, web-based system for multi-modality microscopy image management, dissemination, and visualization. We will leverage a large set of informatics tools and algorithms we have developed for microscopy image analysis, integrative translational cancer research, pathology spatial analytics, and high performance computing in the past 14 years. The developed tools will be tested and used by a suite of well-funded cancer research projects on pancreatic cancer, brain tumor, head and neck, liver, and lung cancers. The proposed informatics tools will enable precise and comprehensive characterizations of the histologic, molecular, cellular and tissue-level interactions at critical transition stages in cancer progression. They will also allow for a precise interrogation of physical and spatial signatures of immune cell infiltration into tumors, and the interactions between the host immune system and tumor cell metastasis within a complex tumor micro-environment architecture, essential for immunotherapy development. The completion of the proposed study will boost our informatics technology capabilities for large scale microscopy image analytics, help cancer researchers accurately understand cancer biology and progression mechanisms, and enable clinicians an easy access to clinically relevant information from large scale microscopy images for computer based diagnosis and therapeutic development.
项目总结:

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3DPro: Querying Complex Three-Dimensional Data with Progressive Compression and Refinement.
Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification.
  • DOI:
    10.3389/fmed.2022.894430
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Meirelles, Andre L. S.;Kurc, Tahsin;Kong, Jun;Ferreira, Renato;Saltz, Joel H.;Teodoro, George
  • 通讯作者:
    Teodoro, George
Deep learning based registration of serial whole-slide histopathology images in different stains.
  • DOI:
    10.1016/j.jpi.2023.100311
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roy, Mousumi;Wang, Fusheng;Teodoro, George;Bhattarai, Shristi;Bhargava, Mahak;Rekha, T Subbanna;Aneja, Ritu;Kong, Jun
  • 通讯作者:
    Kong, Jun
Accelerating Spatial Cross-Matching on CPU-GPU Hybrid Platform With CUDA and OpenACC.
使用 CUDA 和 OpenACC 加速 CPU-GPU 混合平台上的空间交叉匹配。
  • DOI:
    10.3389/fdata.2020.00014
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Baig,Furqan;Gao,Chao;Teng,Dejun;Kong,Jun;Wang,Fusheng
  • 通讯作者:
    Wang,Fusheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Kong其他文献

Jun Kong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Kong', 18)}}的其他基金

Computational pathology software for integrative cancer research with three-dimensional digital slides
用于利用三维数字切片进行综合癌症研究的计算病理学软件
  • 批准号:
    9980817
  • 财政年份:
    2019
  • 资助金额:
    $ 30.81万
  • 项目类别:
Quantitative Analysis of GBM Invasion Mechanisms with New Imaging Protocol
使用新成像方案定量分析 GBM 侵袭机制
  • 批准号:
    8618183
  • 财政年份:
    2014
  • 资助金额:
    $ 30.81万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 30.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了