Predictive experiment-based multiscale models of the tumor immune microenvironment and immunotherapy in breast cancer
基于预测实验的肿瘤免疫微环境和乳腺癌免疫治疗的多尺度模型
基本信息
- 批准号:10238909
- 负责人:
- 金额:$ 52.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-13 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAnimal ModelAnimalsBiological ProductsBiopsyBiopsy SpecimenBloodBreast Cancer ModelBreast Cancer PatientCD8-Positive T-LymphocytesCTLA4 geneCancer BiologyCancer ModelCellsClinicalClinical DataClinical PathologyClinical ResearchClinical TrialsClinical Trials DesignCollaborationsCombination immunotherapyCommunitiesComprehensive Cancer CenterComputer AnalysisComputer ModelsComputing MethodologiesConduct Clinical TrialsDataData AnalysesDevelopmentDiagnosisDifferential EquationDoseDrug IndustryEnsureEpigenetic ProcessFOXP3 geneFemaleFlow CytometryGoalsHybridsImage AnalysisImmuneImmune checkpoint inhibitorImmune responseImmunocompetentImmunofluorescence MicroscopyImmunogenomicsImmunologic MarkersImmunomodulatorsImmunotherapyLaboratoriesLigandsMalignant NeoplasmsMammary NeoplasmsMedicineMethodologyMethodsModalityModelingMolecularMolecular BiologyMusMyeloid-derived suppressor cellsNeoplasm MetastasisOX40PathologyPatientsPeripheralPharmaceutical PreparationsPharmacologyPrognosisProtein ArrayProtocols documentationRadiology SpecialtyRegimenRegulatory T-LymphocyteReportingReproducibilityResearchResearch PersonnelResearch Project SummariesResectedRoleSamplingSourceSpatial DistributionSpecimenSystemSystems BiologyT-LymphocyteTissuesTreatment ProtocolsUncertaintyUnited StatesValidationanimal dataanti-CTLA4anti-PD-1anti-PD-L1basecancer cellcancer drug resistancecancer immunotherapycancer subtypescancer therapychemotherapyclinical applicationcohortcombinatorialcomputer codecomputer studiesdesigndrug developmenteffective therapyeffector T cellepigenetic drugexperimental studyimmune checkpointimmune checkpoint blockadeimmunogenicimmunotherapy clinical trialsin silicoinsightlymph nodesmalignant breast neoplasmmolecular markermouse modelmulti-scale modelingnovelobjective response rateoutcome predictionpathology imagingpotential biomarkerpredictive markerprogrammed cell death ligand 1programmed cell death protein 1responsespatiotemporaltherapy developmenttriple-negative invasive breast carcinomatumortumor growthtumor heterogeneitytumor microenvironmenttumor-immune system interactionsvirtual clinical trial
项目摘要
Project Summary
This research will focus on immunotherapy and the tumor microenvironment in breast cancer, and particularly
triple-negative breast cancer (TNBC), which is highly metastatic, has the worst prognosis among breast cancer
subtypes, and is lacking effective therapies. Immunotherapy is changing the paradigm of cancer treatment, but
in breast cancer the response rate to single agent immune checkpoint blockade is low, compared to more
immunogenic cancers. A quantitative understanding of the complexity of the immune-cancer interactions is
presently insufficient. The long-term goal of this project is to develop predictive, mechanistic clinically- and
experimentally-based computational models of breast cancer, taking into account the immune-cancer
interactions, and apply them to modeling cancer immunotherapy. The project will be a close collaboration
between computational, clinical, and experimental researchers. We will formulate quantitative systems
pharmacology (QSP) ordinary differential equation-based models comprising tumor (primary and metastasis),
lymph nodes, and blood and peripheral compartments; we will also formulate spatio-temporal three-
dimensional agent-based and hybrid tumor models that will describe tumor heterogeneity that is a hallmark of
cancer. Transport of ligands and drugs will be modeled by partial differential equations. The data for these
spatial models will be derived from our computational analysis of clinical pathology images where we will
determine the spatial distributions of immune cells, such as CD8+ T cells, regulatory T cells, and myeloid-
derived suppressor cells, and molecular markers such as PD-1, PD-L1, PD-L2, FoxP3, and LAG-3. The
distributions will be used to parameterize and validate the models; part of these data will serve as the input to
computational models and part for model validation. We will conduct state-of-the-art sensitivity analysis and
uncertainty quantification. The computer codes will be reported in the form to share with the research
community, to ensure reproducibility. The clinical data will be derived from several breast cancer
immunotherapy clinical trials in which immune checkpoints CTLA-4, PD-1, and PD-L1 are targeted, in
combination with immunomodulating agents, e.g. epigenetic. Clinical data will be supplemented with
experimental data obtained from syngeneic mouse models with orthotopic triple-negative breast cancer
tumors, with the experimental protocols mimicking the clinical trials. A variety of experimental methods will be
used to provide a plethora of data for model parameterization and validation, including flow cytometry,
immunofluorescence microscopy, protein arrays, and molecular biology. Additional immune checkpoints will be
explored experimentally and computationally, such as OX40 and LAG-3. The research will contribute to a
fundamental understanding of breast cancer biology, to the identification of potential biomarkers, and will aid in
design and interpretation of clinical trials. The synergistic combination of computational, clinical, and
experimental studies will provide significant insights into breast cancer immunotherapy.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEKSANDER S. POPEL其他文献
ALEKSANDER S. POPEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEKSANDER S. POPEL', 18)}}的其他基金
Bioinformatic analysis of molecular networks in peripheral artery disease
外周动脉疾病分子网络的生物信息分析
- 批准号:
8909175 - 财政年份:2014
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
10368099 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
7845860 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
9908148 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
8451397 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
8134170 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
8887403 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
8060544 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
8253755 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
Systems Biology of Angiogenesis in Peripheral Arterial Disease
周围动脉疾病血管生成的系统生物学
- 批准号:
8644855 - 财政年份:2010
- 资助金额:
$ 52.78万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 52.78万 - 项目类别:














{{item.name}}会员




