The mechanical role of the glycocalyx in cancer cell adhesion
糖萼在癌细胞粘附中的机械作用
基本信息
- 批准号:10247898
- 负责人:
- 金额:$ 9.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdaptor Signaling ProteinAdhesionsBiochemicalBiological AssayBiophysical ProcessBiophysicsBloodBlood CirculationBlood specimenBrainBreastCancer DiagnosticsCell AdhesionCell Adhesion MoleculesCell surfaceCellsClinicalCoagulation ProcessCytoskeletonDNADetectionDevelopmentDiagnosticDoctor of PhilosophyEarly DiagnosisElementsFibrinogenFluorescence MicroscopyFluorescence PolarizationGlioblastomaGlycocalyxGlycoproteinsHumanImageImage AnalysisImmobilizationIndividualIntegrinsInvadedLettersLiteratureLungMapsMeasuresMechanicsMediatingMethodsModelingMolecularMolecular ConformationMotorNatureNeoplasm Circulating CellsNeoplasm MetastasisObservation in researchOutcomes ResearchPhasePlatelet ActivationProcessPropertyRecurrenceResearchRoleSamplingScreening for cancerSeriesSpecificityStructureTechniquesTechnologyTestingThickTissuesVinculinWorkanticancer researchbasecancer cellcancer typecareerdesignexperienceexperimental studyfluorophoreimprovedmechanical devicemechanical propertiesnanonanosensorsoverexpressionrecruitscreeningsimulationskillssoft tissuetargeted cancer therapytherapeutic targettool
项目摘要
Project Summary
Many types of cancer – such as recurrent glioblastoma multiform, which is invariably lethal – overexpress
bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its
surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues
and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the
glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters
have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be
possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely
scrutinized in recent years; a more nuanced understanding of the biophysical underpinnings of glycocalyx-
mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis,
and elucidate general biophysical processes that extend far beyond the realm of cancer research.
Here I present the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension
experienced by clustered integrins. Integrins function as mechanosensors that undergo structure-switching into
“active” conformations when subjected to mechanical tension. As such, my hypothesis would, if true, suggest a
more immediate regulatory role of the glycocalyx in adhesion than previously realized. This hypothesis (which I
call the local organization hypothesis) is well-supported through indirect observation in the research literature
but has not been directly tested due to challenges associated with measuring mechanical tension on individual
biomolecules in live cells. However, I have devoted much of my career to developing DNA-based
mechanosensor tools that can be used to directly measure piconewton-scale integrin tension in live cells. Here
I propose to utilize these tools to test the local organization hypothesis and bring clarity to this rapidly-growing
research field. I plan to image integrin forces during the early stages of cellular adhesion and test for a set of
specific observations that would support or refute the local organization hypothesis. In parallel, I plan to leverage
my computational skills to test this hypothesis using a sophisticated chemomechanical simulation method.
For my postdoctoral (K00) work, I will transition into translational work and develop tools that leverage the
principles of glycocalyx-mediated adhesion for cancer diagnostic purposes. Because glycocalyx-presenting
cancer cells adhere more readily to soft substrates, I will develop a flow-based method for detecting circulating
tumor cells (CTCs) using soft substrates and substrates of varying stiffness that facilitate mechanoselection of
glycocalyx-presenting cancer cells. This mechanoselection-based method will enable mechanical profiling of
CTCs to determine what types of tissues are most vulnerable to metastasis and will also allow for conventional
biochemical profiling in parallel. This work will deliver a substantially enhanced understanding of the mechanisms
of metastasis, as well as tools that can put this improved understanding to diagnostic use in clinical settings.
项目摘要
许多类型的癌症--如复发性多形性胶质母细胞瘤,它总是致命的--过度表达,
庞大的糖蛋白形成厚的糖萼层。糖萼在物理上将细胞与其
周围环境,但最近的工作表明,糖萼可以矛盾地增加粘附到软组织
从而促进癌细胞的转移。这一令人惊讶的现象之所以发生,是因为
糖萼迫使细胞表面的粘附分子(称为整联蛋白)成簇。这些整合素簇
具有协同作用,使它们与周围组织形成比
可能具有相等数量的未成簇的整联蛋白。这些合作机制一直受到
近年来,人们对糖萼的生物物理基础有了更细致的了解,
介导的粘附可以揭示治疗靶点,加深我们对癌症转移的一般理解,
并阐明了远远超出癌症研究领域的一般生物物理过程。
在这里我提出的假设,即糖萼有增加机械张力的额外作用
由聚集的整合素引起。整合素作为机械传感器,其经历结构转换,
“活性”构象时,受到机械张力。因此,我的假设如果是真的,
糖萼在粘附中比以前认识到的更直接的调节作用。这个假设(我
所谓的地方组织假说)是很好的支持,通过间接观察的研究文献
但是由于与测量个体上的机械张力相关的挑战,
活细胞中的生物分子。然而,我把我职业生涯的大部分时间都花在了开发基于DNA的
机械传感器工具,可用于直接测量活细胞中的皮牛顿级整联蛋白张力。这里
我建议利用这些工具来测试本地组织假设,并澄清这一快速增长的
研究领域。我计划在细胞粘附的早期阶段成像整合素的力量,并测试一组
支持或反驳局部组织假说的具体观察结果。与此同时,我计划利用
我的计算能力来测试这个假设使用复杂的化学力学模拟方法。
对于我的博士后(K 00)工作,我将过渡到翻译工作,并开发利用
用于癌症诊断目的的糖萼介导的粘附原理。因为糖萼呈递
癌细胞更容易粘附在软基质上,我将开发一种基于流动的方法来检测循环
肿瘤细胞(CTC),其使用软基质和不同硬度的基质,
糖萼递呈癌细胞。这种基于机械选择的方法将使得能够机械地分析
CTCs来确定什么类型的组织最容易发生转移,并且还将允许常规的
生化分析并行。这项工作将大大提高对这些机制的理解
以及可以将这种改进的理解用于临床诊断的工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit.
庞大的糖萼能否促进早期整合素粘附中的捕获结合?
- DOI:10.1101/2023.03.16.532909
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Blanchard,Aaron
- 通讯作者:Blanchard,Aaron
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Blanchard其他文献
Aaron Blanchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Blanchard', 18)}}的其他基金
The mechanical role of the glycocalyx in cancer cell adhesion
糖萼在癌细胞粘附中的机械作用
- 批准号:
10542333 - 财政年份:2020
- 资助金额:
$ 9.36万 - 项目类别:
The mechanical role of the glycocalyx in cancer cell adhesion
糖萼在癌细胞粘附中的机械作用
- 批准号:
10264931 - 财政年份:2020
- 资助金额:
$ 9.36万 - 项目类别: