Lupus Nephritis Neural Network, LuNN
狼疮性肾炎神经网络,LuNN
基本信息
- 批准号:10246669
- 负责人:
- 金额:$ 10.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAutomobile DrivingCellular StructuresChildChronicClassificationComputer Vision SystemsDiagnosisDiagnosticEnd stage renal failureFeedbackGoldHistologicHumanImageKidneyLupusLupus NephritisMachine LearningMusNephritisOutcomeOutcome StudyPathologistPathologyPatientsPerformancePhenotypePrediction of Response to TherapyReadingReportingReproducibilityRetrievalSupervisionSystemic Lupus ErythematosusTestingTissuesTrainingUncertaintyaccurate diagnosisbaseconvolutional neural networkdeep learningdiagnosis standardfallsimprovedindexinginnovationkidney biopsyneural networknovelpredict clinical outcometime intervaltooltreatment responseuser-friendlyweb portal
项目摘要
Up to 60% of adults and 80% of children with systemic lupus erythematosus (SLE) develop
nephritis (LN), with 10–30% progressing to end-stage renal disease (ESRD). The gold standard
for diagnosis of LN is a renal biopsy. Histological parameters remain the best predictors of
ESRD. Despite being the gold standard, histological diagnosis of LN has several shortcomings.
In multiple inter-observer renal pathology assessment studies reported thus far, the inter-
pathologist correlation coefficients, or concordance, in assessing most histological parameters
have been sub-optimal. This has provided the impetus for the current proposal.
We propose to leverage the power of computer vision and deep learning to build a classifier that
rivals the best-trained renal pathologists in making a histological diagnosis of LN using current
diagnostic criteria. We propose to train a deep convolutional neural network to distinguish the
different LN classes, and to identify a full spectrum of histological attributes useful for diagnosis.
We will compare the performance of the newly generated neural network in scoring
glomerular/tubulo-interstitial features and LN classes, against a panel of human renal
pathologists. Finally, we propose to build a neural network that can predict clinical outcome
based on baseline renal pathology. Reliable and reproducible classification of LN could
dramatically improve patient management and long-term renal and patient survival.
高达60%的成人和80%的儿童患有系统性红斑狼疮(SLE)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHANDRA MOHAN其他文献
CHANDRA MOHAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHANDRA MOHAN', 18)}}的其他基金
Diagnostic utility of antibodies to post-translationally modified nucleosomes in lupus nephritis
翻译后修饰核小体抗体在狼疮性肾炎中的诊断效用
- 批准号:
10683684 - 财政年份:2023
- 资助金额:
$ 10.08万 - 项目类别:
Novel Point of Care assays for Urinary Diagnostics of Nephritis
用于肾炎尿液诊断的新型护理点检测
- 批准号:
9570651 - 财政年份:2017
- 资助金额:
$ 10.08万 - 项目类别:
Novel Point of Care assays for Urinary Diagnostics of Nephritis
用于肾炎尿液诊断的新型护理点检测
- 批准号:
9753123 - 财政年份:2017
- 资助金额:
$ 10.08万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.08万 - 项目类别:
Continuing Grant