Cephalopod-Inspired Bioelectronic Control of Cellular Signaling
受头足类动物启发的细胞信号生物电子控制
基本信息
- 批准号:10246105
- 负责人:
- 金额:$ 134.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBiologicalBiologyBreathingCardiovascular systemCell CommunicationCell physiologyCellsCephalopodaClinicalDevelopmentDevicesDiseaseEngineeringFoundationsGeneticHuman bodyImplantLengthLigandsLipidsLiteratureMediatingMembraneMetabolic syndromeMethodologyMusculoskeletal DiseasesNerve DegenerationNucleic AcidsPathologicPathway interactionsPhysiological ProcessesPlayProductionProteinsRegulationResearchRoleSignal TransductionSkinSourceStimulusStructureSystemTechniquesTechnologyTherapeuticTissuesVesicleWireless TechnologyWorkbaseclinical applicationclinical diagnosticsclinically relevantcontrolled releaseextracellular vesiclesgenetically modified cellsnovel diagnosticsparticletreatment strategytumor progressionwound healing
项目摘要
Project Summary/Abstract
The ability of cells to efficiently communicate across organismal-level distances and difficult-to-surmount
biological barriers is one of the most important fundamental phenomena in biology. A vast body of literature has
revealed that such cell-to-cell communication is mediated via membrane-enclosed particles called extracellular
vesicles, which are released by cells into their surroundings and contain lipids, ligands, nucleic acids, and
proteins. Such extracellular vesicles represent one of the only natural non-viral structures by means of which
“source” cells can reprogram the genetics and fate of “target” cells, and as such, they are implicated not only in
the regulation of nearly every cellular process but also in the development of nearly every tissue within the human
body. Moreover, these vesicles play essential roles in various disease states and pathological conditions,
including cancer progression, neurodegeneration, musculoskeletal disorders, cardiovascular degradation,
metabolic syndromes, and wound healing. Given their ubiquity and crucial biological roles, extracellular vesicles
hold great promise for clinical diagnostics and therapeutics, but to date, such applications have been hindered
by key challenges associated with 1) fundamentally understanding extracellular vesicle formation in source cells,
2) loading extracellular vesicles with biomolecular cargo in high yield, 3) controllably regulating extracellular
vesicle production with external stimuli, 4) delivering extracellular vesicles to target cells over tissue-relevant
length scales, 5) maintaining the long-term biological activity of extracellular vesicle-internalized cargo, and 6)
implementing extracellular vesicle-based treatment strategies in living animals. Herein, by drawing inspiration
from proteins and structures found in cephalopod skin cells and leveraging the technical foundation established
for cephalopod-inspired bioelectronic devices, we propose to solve all of the scientific and technological
challenges currently impeding clinical applications of extracellular vesicles. The envisioned research plan
involves 1) validating electrical techniques for controlling the release of extracellular vesicles from genetically
engineered cells interfaced with different bioelectronic devices and platforms, 2) developing strategies for
remotely and wirelessly controlling the release of biomolecular cargo-loaded extracellular vesicles from
engineered cells interfaced into implantable bioelectronic systems, and 3) demonstrating that remotely controlled
release of clinically valuable cargo-loaded extracellular vesicles by implanted bioelectronic system-integrated
source cells can guide target cell fate and tissue development in living animals. Altogether, the successful
completion of the proposed work will enable harnessing of extracellular vesicle-mediated cell-to-cell
communication pathway for the regulation of physiological processes and will thus furnish transformative
opportunities for developing unprecedented next generation diagnostic and therapeutic technologies.
项目概要/摘要
细胞跨有机体水平距离和难以克服的有效通信的能力
生物屏障是生物学中最重要的基本现象之一。大量的文献已经
揭示这种细胞间通讯是通过称为细胞外的膜封闭颗粒介导的
囊泡,由细胞释放到周围环境中,含有脂质、配体、核酸和
蛋白质。这种细胞外囊泡代表了唯一的天然非病毒结构之一,通过它
“源”细胞可以重新编程“目标”细胞的遗传和命运,因此,它们不仅涉及
几乎每个细胞过程的调节,以及人体几乎每个组织发育的调节
身体。此外,这些囊泡在各种疾病状态和病理状况中发挥着重要作用,
包括癌症进展、神经退行性疾病、肌肉骨骼疾病、心血管退化、
代谢综合征和伤口愈合。鉴于其普遍存在和重要的生物学作用,细胞外囊泡
为临床诊断和治疗带来巨大希望,但迄今为止,此类应用受到阻碍
通过与以下相关的关键挑战:1)从根本上了解源细胞中细胞外囊泡的形成,
2) 高产率地向细胞外囊泡装载生物分子货物,3) 可控地调节细胞外囊泡
在外部刺激下产生囊泡,4) 通过组织相关将细胞外囊泡递送至靶细胞
长度尺度,5) 维持细胞外囊泡内化货物的长期生物活性,以及 6)
在活体动物中实施基于细胞外囊泡的治疗策略。在此,通过汲取灵感
来自头足类动物皮肤细胞中发现的蛋白质和结构,并利用已建立的技术基础
对于受头足类动物启发的生物电子设备,我们建议解决所有科学和技术问题
目前阻碍细胞外囊泡临床应用的挑战。设想的研究计划
涉及 1) 验证用于控制遗传性细胞外囊泡释放的电技术
与不同生物电子设备和平台连接的工程细胞,2)制定策略
远程无线控制装载生物分子货物的细胞外囊泡的释放
工程细胞连接到可植入生物电子系统,3)证明远程控制
通过植入的生物电子系统集成释放具有临床价值的装载货物的细胞外囊泡
源细胞可以指导活体动物中靶细胞的命运和组织发育。总而言之,成功的
完成拟议的工作将能够利用细胞外囊泡介导的细胞间相互作用
调节生理过程的通讯途径,从而提供变革性的
开发前所未有的下一代诊断和治疗技术的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alon A Gorodetsky其他文献
Alon A Gorodetsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 134.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 134.36万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 134.36万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 134.36万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




