Synthetic organogenesis: new paradigms in reconstituting human organ development in vitro
合成器官发生:体外重建人体器官发育的新范例
基本信息
- 批准号:10245855
- 负责人:
- 金额:$ 145.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBiochemicalBiologyBypassCellsCharacteristicsChronicClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsColonComplexCouplingCuesDevelopmental BiologyEmbryoEmbryonic StructuresFetal DevelopmentGene Expression ProfileGeneticGerm LayersHumanIn VitroInfectionInflammationKnowledgeLarge IntestineLightLungMechanicsMicrofluidicsMolecularMorphogenesisOrganOrganogenesisOrganoidsPatientsPatternProcessProtocols documentationRegenerative MedicineRouteSignal PathwaySignal TransductionSourceSystemTailTechniquesThymus GlandTimeTissue EngineeringTissuesTranscriptional RegulationTubeWorkfetalgenome editinggut homeostasishigh-throughput drug screeninghuman pluripotent stem cellhuman stem cellshuman tissuein vitro Modelinnovative technologieslive cell microscopymorphogensnovelorgan growthphysiologic modelpluripotencyprogenitorreconstitutionself organizationspatiotemporalstem cell biologytooltranscriptomics
项目摘要
PROJECT SUMMARY
Organogenesis is a process in which biochemical signals and mechanical cues transform embryonic germ layers
into organs during fetal development. With recent advancements in stem cell biology, it has become possible to
differentiate human pluripotent stem cells into expandable 3D tissues that contain many of the cellular and
functional characteristics of fetal organs. These so-called organoids hold a tremendous potential to answer
longstanding questions of human organogenesis and to one day serve as a renewable source of patient-specific
human tissues. However, human organoids still only approximatively recapitulate organogenesis as they rely
on spontaneous tissue self-organization and the establishment of signaling gradients in unpredictable ways.
Furthermore, available organoid protocols focus on single organs and do not focus on morphogenesis. We be-
lieve that making a meaningful progress in the field demands 1), gaining a deeper understanding of the coupling
between signaling networks, tissue-specific transcriptional signatures, and tissue morphogenesis and 2), devel-
oping novel cross-disciplinary tools that control spatiotemporal signaling to accurately mimic organogenesis in
vitro. This proposal aims precisely to advance these gaps in our knowledge. We focus on the organogenesis of
the gut tube, the embryonic structure on which many adjacent organs form, from thymus and lungs to the colon.
Breaking away from the current organoid paradigms, which heavily rely on self-organization and the establish-
ment of often uncontrolled internal gradients, we will combine tissue micropatterning and microfluidics to gen-
erate precise signaling gradients so to reproducibly mimic both the signaling and the morphogenesis of gut tube
organogenesis in vitro. Combined with live-cell microscopy, CRISPR editing, and single cell transcriptomics our
organoids will reveal a detailed hierarchy of fate choices cells make from pluripotency to regionally specialized
tissues in the gut tube, and they will allow us to make crucial connections between signaling, transcriptional
regulation, and tissue morphogenesis. Our work will shed light on the largely unknown regulatory mechanisms
by which the complex signaling pathways interact to create asymmetric patterns along the body axes. For the
first time, our approach will recapitulate the formation of multiple adjacent gut tube progenitors from an em-
bryonic germ layer, providing a unique window into one of longstanding questions in developmental biology:
how do continuous signals create discretely separated organs along body axes? Finally, in collaboration with
CRISPR experts, we will generate a pipeline that bypasses traditional morphogen-driven differentiation of plu-
ripotent cells, but instead uses inducible genetic circuits to mimic fate decisions. This novel system will have the
capacity to generate highly precise human tissues on the fly, in an approach that can be termed synthetic organ-
ogenesis. Our proposed work will open routes to studying long elusive molecular mechanisms of early human
organogenesis and start bridging the crucial gap between organoid biology and regenerative medicine.
项目摘要
器官发生是一个生化信号和机械信号改变胚胎胚层的过程
在胎儿发育过程中进入器官。随着干细胞生物学的最新进展,
将人类多能干细胞分化成可膨胀的3D组织,
胎儿器官的功能特点。这些所谓的类器官有着巨大的潜力来回答
人类器官发生的长期问题,并有一天作为一个可再生的来源,患者特异性
人体组织然而,人类类器官仍然只是近似地重演器官发生,因为它们依赖于
自发组织自组织和以不可预测的方式建立信号梯度。
此外,可用的类器官方案关注单个器官,而不关注形态发生。我们-
我认为,要在该领域取得有意义的进展,需要1)更深入地了解耦合
之间的信号网络,组织特异性转录签名,和组织形态和2),发展,
希望新的跨学科工具,控制时空信号,以准确地模拟器官发生,
体外这一提议的目的正是为了扩大我们知识中的这些空白。我们关注的是
肠管是胚胎的结构,从胸腺、肺到结肠,许多邻近的器官在其上形成。
打破目前的类器官范式,严重依赖自组织和建立-
我们将结合联合收割机组织微图案和微流体技术,
产生精确的信号梯度,以便可重复地模拟肠管的信号和形态发生
体外器官发生结合活细胞显微镜、CRISPR编辑和单细胞转录组学,
类器官将揭示细胞从多能性到区域特化的命运选择的详细层次
它们将使我们能够在信号传导、转录、
调节和组织形态发生。我们的工作将揭示在很大程度上未知的监管机制
复杂的信号传导途径通过这些信号传导途径相互作用以产生沿身体轴沿着的不对称图案。为
第一次,我们的方法将重演多个相邻的肠管祖细胞的形成,
胚胚层,为发育生物学中一个长期存在的问题提供了一个独特的窗口:
连续的信号是如何沿着沿着身体轴线产生离散的分离器官的?最后,与
CRISPR专家,我们将创建一个管道,绕过传统的形态发生驱动的plu分化,
相反,它使用可诱导的遗传回路来模仿命运决定。这个新系统将具有
能够在飞行中产生高度精确的人体组织,这种方法可以称为合成器官-
起源我们提出的工作将为研究早期人类发育的长期难以捉摸的分子机制开辟道路。
器官发生,并开始弥合器官生物学和再生医学之间的关键差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mijo SIMUNOVIC其他文献
Mijo SIMUNOVIC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mijo SIMUNOVIC', 18)}}的其他基金
Synthetic organogenesis: new paradigms in reconstituting human organ development in vitro
合成器官发生:体外重建人体器官发育的新范例
- 批准号:
10622903 - 财政年份:2022
- 资助金额:
$ 145.8万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 145.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
$ 145.8万 - 项目类别:
Developing synthetic chemical biology strategies for biochemical investigations and biomedical applications
开发用于生化研究和生物医学应用的合成化学生物学策略
- 批准号:
10623497 - 财政年份:2023
- 资助金额:
$ 145.8万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2022: Defining the biochemical mechanisms of microtubule shrinking and nucleation by combining innovative experiments and simulations
2022 财年 NSF 生物学博士后奖学金:通过结合创新实验和模拟来定义微管收缩和成核的生化机制
- 批准号:
2209298 - 财政年份:2022
- 资助金额:
$ 145.8万 - 项目类别:
Fellowship Award
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10665058 - 财政年份:2021
- 资助金额:
$ 145.8万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1 - Multi-Mode Detection and Imaging of Biomolecular Condensates.
描述 EWSR1 生物学的综合生化和结构方法 - 生物分子凝聚物的多模式检测和成像。
- 批准号:
10797858 - 财政年份:2021
- 资助金额:
$ 145.8万 - 项目类别:
An Integrated Biochemical and Structural Approach to Delineating the Biology of EWSR1
描述 EWSR1 生物学的综合生化和结构方法
- 批准号:
10298663 - 财政年份:2021
- 资助金额:
$ 145.8万 - 项目类别:
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2019
- 资助金额:
$ 145.8万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2018
- 资助金额:
$ 145.8万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biochemical insights into the biology of marine vertebrates and the ecosystems within which they function
对海洋脊椎动物及其功能的生态系统的生物学的生理和生化见解
- 批准号:
RGPIN-2015-04374 - 财政年份:2017
- 资助金额:
$ 145.8万 - 项目类别:
Discovery Grants Program - Individual