HDAC1 Regulation of Endothelial NO
HDAC1 对内皮 NO 的调节
基本信息
- 批准号:10245088
- 负责人:
- 金额:$ 1.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-12-22
- 项目状态:已结题
- 来源:
- 关键词:AcetylationArginineBiological AvailabilityCardiovascular DiseasesCardiovascular systemCell physiologyCessation of lifeComplexDataDeacetylationDependenceEndothelial CellsEndotheliumEnzymesEpigenetic ProcessFamilyFellowshipFoundationsFutureGenesGenetic TranscriptionGlutamineGoalsHDAC1 geneHealthHealthcareHistone DeacetylaseHistonesHumanImpairmentInjuryIntakeJuxtamedullary NephronKidneyKnock-outKnockout MiceKnowledgeLearningLysineMediatingModificationMusMutationNADPH OxidaseNOS3 geneNitric OxideNitric Oxide SynthaseNuclearOxidative StressPost-Translational Protein ProcessingPreparationProductionProtein IsoformsProteinsPublicationsRattusReactive Oxygen SpeciesRegulationRenal functionResearch PersonnelRiskRoleSignal TransductionSiteSodiumSodium ChlorideSprague-Dawley RatsTechniquesTestingVascular Endotheliumcardiovascular disorder therapycareercell typehigh salt diethistone modificationin vivoinsightkidney vascular structuremortalitynew therapeutic targetnon-histone proteinnovelnovel therapeuticsoverexpressionpromoterrenal arteryrenal damagesalt intake
项目摘要
PROJECT SUMMARY
Excess sodium intake accounts for billions of healthcare dollars every year. In 2010, 1.65 million deaths
from cardiovascular disease were attributed to a high salt diet. Furthermore, sodium intake directly correlates
with kidney function and mortality. A high salt diet causes cardiovascular and renal damage by increasing
oxidative stress and impairing endothelial nitric oxide (NO) signaling. The mechanisms by which a high salt diet
leads to NOS3 uncoupling and increased NADPH oxidase 2 (Nox2) expression and activity remains elusive.
NOS3 uncoupling is characterized by an increase in NOS-dependent reactive oxygen species (ROS) and a
decrease in NOS-dependent NO. The central hypothesis to the proposed studies is that high salt increases
endothelial HDAC1 which uncouples NOS3 via post-translational modification (deacetylation) and increases
Nox2 expression and activity via a transcriptional mechanism. In order to study the role of HDAC1 in NOS3
uncoupling, intra-renal arteries and renal endothelial cells will be isolated from normal and high salt fed rats.
HDAC1 activity as well as HDAC1 dependence of NOS3 uncoupling and NOS3 acetylation will be assessed. We
will generate vascular endothelial HDAC1 knockout (VEHDAC1KO) mice to investigate the necessity of HDAC1
in high salt disrupted NO signaling. The juxtamedullary nephron preparation will be used to assess NO signalling
in small intra-renal arteries. In order to identify which NOS3 lysines are susceptible to HDAC1 deacetylation, we
will utilize NOS3 constructs containing specific lysine (K) to arginine (R) or glutamine (Q) mutations. Cdh5-
CreERT2-Nox2KO mice will be used to assess the role of endothelial Nox2 in high salt disrupted NO signaling
in small intra-renal arteries. We will use VEHDAC1KO mice to elucidate the role of HDAC1 in high salt increased
Nox2 complex expression. ChIP-qPCR will be utilized to assess the effect of HDAC1 on histone modifications at
the promoters of the genes of the Nox2 complex. The long-term goal of this project is to understand the role of
HDAC1 in endothelial NO signaling in order to develop novel therapies for cardiovascular disease.
项目摘要
过量的钠摄入每年占数十亿美元的医疗保健费用。2010年,
导致心血管疾病的原因是高盐饮食。此外,钠的摄入量与
与肾功能和死亡率有关。高盐饮食会增加心血管和肾脏的损害,
氧化应激和损害内皮一氧化氮(NO)信号传导。高盐饮食的机制
导致NOS 3解偶联和NADPH氧化酶2(Nox 2)表达和活性增加仍然是难以捉摸的。
NOS 3解偶联的特征在于NOS依赖性活性氧(ROS)的增加,
所提出的研究的中心假设是,高盐会增加
内皮HDAC 1通过翻译后修饰(脱乙酰化)解偶联NOS 3,
通过转录机制的Nox 2表达和活性。为了研究HDAC 1在NOS 3中的作用,
解偶联、肾内动脉和肾内皮细胞将从正常和高盐喂养的大鼠中分离。
将评估HDAC 1活性以及NOS 3解偶联和NOS 3乙酰化的HDAC 1依赖性。我们
将产生血管内皮HDAC 1敲除(VEHDAC 1 KO)小鼠,以研究HDAC 1的必要性。
高盐破坏NO信号传导。将使用髓质肾单位制备物评估NO信号传导
肾内小动脉为了鉴定哪些NOS 3赖氨酸对HDAC 1脱乙酰化敏感,我们
将利用含有特异性赖氨酸(K)至精氨酸(R)或谷氨酰胺(Q)突变的NOS 3构建体。Cdh 5-
CreERT 2-Nox 2KO小鼠将用于评估内皮Nox 2在高盐破坏的NO信号传导中的作用
肾内小动脉我们将使用VEHDAC 1 KO小鼠来阐明HDAC 1在高盐增加中的作用。
Nox 2复合物表达。ChIP-qPCR将用于评估HDAC 1对组蛋白修饰的影响,
Nox 2复合体基因的启动子。该项目的长期目标是了解
HDAC 1在内皮NO信号转导中的作用,以开发心血管疾病的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke Stewart Dunaway其他文献
Luke Stewart Dunaway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luke Stewart Dunaway', 18)}}的其他基金
相似国自然基金
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting protein arginine methylation in the 9p21.3 loss tumor microenvironment
9p21.3 缺失肿瘤微环境中的靶向蛋白精氨酸甲基化
- 批准号:
489995 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Operating Grants
The role of protein arginine methyl transferase PRMT1 on myelin development
蛋白精氨酸甲基转移酶PRMT1对髓磷脂发育的作用
- 批准号:
23K14287 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Arginine Depletion Combined with Platinum-Taxane Chemotherapy in Aggressive Variant Prostate Cancers (AVPC)
精氨酸消耗联合铂类紫杉烷化疗对侵袭性变异前列腺癌 (AVPC) 的影响
- 批准号:
10715329 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Normalizing arginine metabolism with sepiaptein for immunostimulatory-shift ofHER2+ breast cancer
使用 Sepiaptein 使精氨酸代谢正常化以实现 HER2 乳腺癌的免疫刺激转变
- 批准号:
10776256 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Understanding resistance mechanisms to protein arginine methyltransransferase Inhibitors in Lymphoma
了解淋巴瘤对蛋白精氨酸甲基转移酶抑制剂的耐药机制
- 批准号:
10668754 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Targeting protein arginine methylation in the 9p21.3 loss tumor microenvironment
9p21.3 缺失肿瘤微环境中的靶向蛋白精氨酸甲基化
- 批准号:
498862 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Operating Grants
Physiological function of arginine signaling:macropinocytosisand tumor immune evasion
精氨酸信号的生理功能:巨胞饮作用与肿瘤免疫逃避
- 批准号:
23H03317 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regulation of androgen receptor signaling in prostate cancer by protein arginine methylation
通过蛋白质精氨酸甲基化调节前列腺癌中的雄激素受体信号传导
- 批准号:
10584689 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Arginine methylation of the RNA helicase DDX5 in the regulation of RNA/DNA hybrids during the DNA damage response.
RNA 解旋酶 DDX5 的精氨酸甲基化在 DNA 损伤反应期间调节 RNA/DNA 杂交体中的作用。
- 批准号:
487619 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别:
Operating Grants
Regulation of and Target Recognition by Protein Arginine Methyltransferase 1 (PRMT1)
蛋白质精氨酸甲基转移酶 1 (PRMT1) 的调节和目标识别
- 批准号:
10653465 - 财政年份:2023
- 资助金额:
$ 1.4万 - 项目类别: